vllm/vllm/model_executor/models/qwen2_5_vl.py
Yuanyuan Chen 6772bb0f7d
Remove unnecessary CUDA sync of qwen image and video preprocess (#22792)
Signed-off-by: cyy <cyyever@outlook.com>
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-08-13 06:07:28 -07:00

1179 lines
47 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Adapted from
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py
# Copyright 2025 The vLLM team.
# Copyright 2025 The Qwen Team.
# Copyright 2025 The HuggingFace Inc. team.
# All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Qwen2.5-VL model compatible with HuggingFace weights."""
from collections.abc import Iterable, Mapping
from functools import lru_cache, partial
from typing import Callable, Literal, Optional, TypedDict, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers import BatchFeature
from transformers.models.qwen2_5_vl import Qwen2_5_VLProcessor
from transformers.models.qwen2_5_vl.configuration_qwen2_5_vl import (
Qwen2_5_VLConfig, Qwen2_5_VLVisionConfig)
from vllm.config import VllmConfig
from vllm.distributed import parallel_state
from vllm.distributed import utils as dist_utils
from vllm.logger import init_logger
from vllm.model_executor import SamplingMetadata
from vllm.model_executor.layers.activation import get_act_and_mul_fn
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.quantization.gptq import GPTQConfig
from vllm.model_executor.layers.quantization.gptq_marlin import (
GPTQMarlinConfig)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalFieldConfig
from vllm.platforms import _Backend
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.config import uses_mrope
from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
SupportsMultiModal, SupportsPP, SupportsQuant)
from .qwen2_vl import Qwen2VLDummyInputsBuilder as Qwen2_5_VLDummyInputsBuilder
from .qwen2_vl import (Qwen2VLMultiModalProcessor, Qwen2VLProcessingInfo,
apply_rotary_pos_emb_vision)
from .utils import (AutoWeightsLoader, WeightsMapper, cast_overflow_tensors,
init_vllm_registered_model, maybe_prefix,
merge_multimodal_embeddings)
from .vision import get_vit_attn_backend
logger = init_logger(__name__)
# === Vision Inputs === #
class Qwen2_5_VLImagePixelInputs(TypedDict):
type: Literal["pixel_values"]
pixel_values: torch.Tensor
"""Shape:
`(num_patches, num_channels * patch_size * patch_size)`
"""
image_grid_thw: torch.Tensor
"""Shape: `(num_images, 3)`
This should be in `(grid_t, grid_h, grid_w)` format.
"""
class Qwen2_5_VLImageEmbeddingInputs(TypedDict):
type: Literal["image_embeds"]
image_embeds: torch.Tensor
"""Supported types:
- list[`torch.Tensor`]: A list of tensors holding all images' features.
Each tensor holds an image's features.
- `torch.Tensor`: A tensor holding all images' features
(concatenation of all images' feature tensors).
Tensor shape: `(num_image_features, hidden_size)`
- `num_image_features` varies based on
the number and resolution of the images.
- `hidden_size` must match the hidden size of language model backbone.
"""
image_grid_thw: torch.Tensor
"""Shape: `(num_images, 3)`
This should be in `(grid_t, grid_h, grid_w)` format.
"""
Qwen2_5_VLImageInputs = Union[Qwen2_5_VLImagePixelInputs,
Qwen2_5_VLImageEmbeddingInputs]
class Qwen2_5_VLVideoPixelInputs(TypedDict):
type: Literal["pixel_values_videos"]
pixel_values_videos: torch.Tensor
"""Shape:
`(num_patches,
num_channels * temporal_patch_size * patch_size * patch_size)`
"""
video_grid_thw: torch.Tensor
"""Shape: `(num_videos, 3)`
This should be in `(grid_t, grid_h, grid_w)` format.
"""
second_per_grid_ts: torch.Tensor
"""
The video time interval (in seconds) for each grid along the temporal
dimension in the 3D position IDs. Returned when `videos` is not `None`.
"""
class Qwen2_5_VLVideoEmbeddingInputs(TypedDict):
type: Literal["video_embeds"]
video_embeds: torch.Tensor
"""Supported types:
- list[`torch.Tensor`]: A list of tensors holding all videos' features.
Each tensor holds an video's features.
- `torch.Tensor`: A tensor holding all videos' features
(concatenation of all videos' feature tensors).
Tensor shape: `(num_image_features, hidden_size)`
- `num_image_features` varies based on
the number and resolution of the videos.
- `hidden_size` must match the hidden size of language model backbone.
"""
video_grid_thw: torch.Tensor
"""Shape: `(num_videos, 3)`
This should be in `(grid_t, grid_h, grid_w)` format.
"""
Qwen2_5_VLVideoInputs = Union[Qwen2_5_VLVideoPixelInputs,
Qwen2_5_VLVideoEmbeddingInputs]
# === Vision Encoder === #
class Qwen2_5_VisionMLP(nn.Module):
def __init__(self,
in_features: int,
hidden_features: int,
bias: bool = False,
act_fn: Callable[[torch.Tensor], torch.Tensor] = F.silu,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = ""):
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
input_size=in_features,
output_sizes=[hidden_features] * 2, # [gate_proj, up_proj]
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj")
self.down_proj = RowParallelLinear(hidden_features,
in_features,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.down_proj")
self.act_fn = act_fn
def forward(self, x: torch.Tensor):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x_down, _ = self.down_proj(x)
return x_down
def all_gather_interleave(local_tensor, hidden_size: int, tp_size: int):
"""All-gather the input tensor interleavely across model parallel group."""
import torch.distributed as dist
gathered_tensors = [torch.zeros_like(local_tensor) for _ in range(tp_size)]
dist.all_gather(gathered_tensors,
local_tensor,
group=parallel_state.get_tp_group().device_group)
gathered_tensors_split = [
torch.split(tensor, hidden_size // tp_size, -1)
for tensor in gathered_tensors
]
ordered_tensors = [
tensor for pair in zip(*gathered_tensors_split) for tensor in pair
]
result_tensor = torch.cat(ordered_tensors, dim=-1)
return result_tensor
class Qwen2_5_VisionAttention(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
projection_size: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
# Per attention head and per partition values.
self.tp_size = parallel_state.get_tensor_model_parallel_world_size()
self.tp_rank = parallel_state.get_tensor_model_parallel_rank()
self.hidden_size_per_attention_head = dist_utils.divide(
projection_size, num_heads)
self.num_attention_heads_per_partition = dist_utils.divide(
num_heads, self.tp_size)
self.qkv = QKVParallelLinear(
hidden_size=embed_dim,
head_size=self.hidden_size_per_attention_head,
total_num_heads=num_heads,
total_num_kv_heads=num_heads,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.qkv")
self.proj = RowParallelLinear(input_size=projection_size,
output_size=embed_dim,
quant_config=quant_config,
prefix=f"{prefix}.proj")
# Detect attention implementation.
self.attn_backend: _Backend = get_vit_attn_backend(support_fa=True)
if self.attn_backend not in {
_Backend.FLASH_ATTN, _Backend.TORCH_SDPA, _Backend.XFORMERS,
_Backend.ROCM_AITER_FA
}:
raise RuntimeError(
f"Qwen2.5-VL does not support {self.attn_backend} backend now."
)
self.is_flash_attn_backend = self.attn_backend in {
_Backend.FLASH_ATTN, _Backend.ROCM_AITER_FA
}
def split_qkv(self, qkv: torch.Tensor) -> tuple[torch.Tensor, ...]:
# [s, b, 3 * head * head_dim]
seq_len, bs, _ = qkv.shape
if self.tp_size > 1:
qkv = all_gather_interleave(qkv, self.qkv.hidden_size,
self.tp_size)
# [s, b, 3 * head * head_dim] -> 3 * [s, b, head * head_dim]
q, k, v = qkv.chunk(3, dim=2)
# 3 * [s, b, head * head_dim]
if self.tp_size > 1:
splitter = partial(dist_utils.split_tensor_along_last_dim,
num_partitions=self.tp_size)
q = splitter(q)[self.tp_rank]
k = splitter(k)[self.tp_rank]
v = splitter(v)[self.tp_rank]
# 3 * [s, b, head * head_dim] -> 3 * [s, b, head, head_dim]
new_shape = (seq_len, bs, self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head)
q, k, v = (x.view(*new_shape) for x in (q, k, v))
return q, k, v
def forward(
self,
x: torch.Tensor,
cu_seqlens: torch.Tensor,
rotary_pos_emb: torch.Tensor,
max_seqlen: Optional[int] = None, # Only used for Flash Attention
seqlens: Optional[list[int]] = None, # Only used for xFormers
) -> torch.Tensor:
# [s, b, c] --> [s, b, head * 3 * head_dim]
x, _ = self.qkv(x)
# [s, b, 3 * head * head_dim] -> 3 * [s, b, head, head_dim]
q, k, v = self.split_qkv(x)
batch_size = q.shape[1]
q, k, v = (rearrange(x, "s b ... -> b s ...").contiguous()
for x in (q, k, v))
if rotary_pos_emb is not None:
q = apply_rotary_pos_emb_vision(q, rotary_pos_emb)
k = apply_rotary_pos_emb_vision(k, rotary_pos_emb)
if self.is_flash_attn_backend:
# from vllm_flash_attn.flash_attn_interface import (
# flash_attn_varlen_func)
if self.attn_backend == _Backend.ROCM_AITER_FA:
from aiter import flash_attn_varlen_func
else:
from flash_attn import flash_attn_varlen_func
q, k, v = (rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v])
output = flash_attn_varlen_func(q,
k,
v,
cu_seqlens_q=cu_seqlens,
cu_seqlens_k=cu_seqlens,
max_seqlen_q=max_seqlen,
max_seqlen_k=max_seqlen,
dropout_p=0.0,
causal=False)
context_layer = rearrange(output,
"(b s) ... -> b s ...",
b=batch_size)
elif self.attn_backend == _Backend.TORCH_SDPA:
# Execute attention entry by entry for speed & less VRAM.
outputs = []
for i in range(1, len(cu_seqlens)):
start_idx = cu_seqlens[i - 1]
end_idx = cu_seqlens[i]
q_i = q[:, start_idx:end_idx]
k_i = k[:, start_idx:end_idx]
v_i = v[:, start_idx:end_idx]
q_i, k_i, v_i = (rearrange(x, "b s h d -> b h s d")
for x in [q_i, k_i, v_i])
output_i = F.scaled_dot_product_attention(q_i,
k_i,
v_i,
dropout_p=0.0)
output_i = rearrange(output_i, "b h s d -> b s h d ")
outputs.append(output_i)
context_layer = torch.cat(outputs, dim=1)
elif self.attn_backend == _Backend.XFORMERS:
from xformers import ops as xops
from xformers.ops.fmha.attn_bias import BlockDiagonalMask
attn_bias = BlockDiagonalMask.from_seqlens(q_seqlen=seqlens,
kv_seqlen=None,
device=q.device)
context_layer = xops.memory_efficient_attention_forward(
q, k, v, attn_bias=attn_bias, p=0, scale=None)
context_layer = rearrange(context_layer,
"b s h d -> s b (h d)").contiguous()
output, _ = self.proj(context_layer)
return output
class Qwen2_5_VisionBlock(nn.Module):
def __init__(
self,
dim: int,
num_heads: int,
mlp_hidden_dim: int,
act_fn: Callable[[torch.Tensor], torch.Tensor] = F.silu,
norm_layer: Optional[Callable[[int], nn.Module]] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = partial(nn.LayerNorm, eps=1e-6)
self.norm1 = norm_layer(dim)
self.norm2 = norm_layer(dim)
self.attn = Qwen2_5_VisionAttention(embed_dim=dim,
num_heads=num_heads,
projection_size=dim,
quant_config=quant_config,
prefix=f"{prefix}.attn")
self.mlp = Qwen2_5_VisionMLP(dim,
mlp_hidden_dim,
act_fn=act_fn,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.mlp")
def forward(
self,
x: torch.Tensor,
cu_seqlens: torch.Tensor,
rotary_pos_emb: torch.Tensor,
max_seqlen: Optional[int] = None, # Only used for Flash Attention
seqlens: Optional[list[int]] = None, # Only used for xFormers
) -> torch.Tensor:
x_attn = self.attn(self.norm1(x),
cu_seqlens=cu_seqlens,
rotary_pos_emb=rotary_pos_emb,
max_seqlen=max_seqlen,
seqlens=seqlens)
x_fused_norm, residual = self.norm2(x, residual=x_attn)
x = residual + self.mlp(x_fused_norm)
return x
class Qwen2_5_VisionPatchEmbed(nn.Module):
def __init__(
self,
patch_size: int = 14,
temporal_patch_size: int = 2,
in_channels: int = 3,
hidden_size: int = 1152,
) -> None:
super().__init__()
self.patch_size = patch_size
self.temporal_patch_size = temporal_patch_size
self.hidden_size = hidden_size
kernel_size = (temporal_patch_size, patch_size, patch_size)
self.proj = nn.Conv3d(in_channels,
hidden_size,
kernel_size=kernel_size,
stride=kernel_size,
bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
L, C = x.shape
x = x.view(L, -1, self.temporal_patch_size, self.patch_size,
self.patch_size)
x = self.proj(x).view(L, self.hidden_size)
return x
class Qwen2_5_VisionPatchMerger(nn.Module):
def __init__(
self,
d_model: int,
context_dim: int,
norm_layer: Optional[Callable[[int], nn.Module]] = None,
spatial_merge_size: int = 2,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = context_dim * (spatial_merge_size**2)
if norm_layer is None:
norm_layer = partial(nn.LayerNorm, eps=1e-6)
self.ln_q = norm_layer(context_dim)
self.mlp = nn.ModuleList([
ColumnParallelLinear(self.hidden_size,
self.hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.mlp.0"),
nn.GELU(),
RowParallelLinear(self.hidden_size,
d_model,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.mlp.2"),
])
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.ln_q(x)
x = x.view(-1, self.hidden_size)
mlp_fc1, mlp_act, mlp_fc2 = self.mlp
x_parallel, _ = mlp_fc1(x)
x_parallel = mlp_act(x_parallel)
out, _ = mlp_fc2(x_parallel)
return out
class Qwen2_5_VisionRotaryEmbedding(nn.Module):
def __init__(self, dim: int, theta: float = 10000.0) -> None:
super().__init__()
self.dim = dim
self.theta = theta
inv_freq = 1.0 / (theta**(
torch.arange(0, dim, 2, dtype=torch.float, device='cpu') / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
self._seq_len_cached = 0
self._freqs_cached = None
def update_freqs_cache(self, seqlen: int) -> None:
if seqlen > self._seq_len_cached:
seqlen *= 2
self._seq_len_cached = seqlen
self.inv_freq = 1.0 / (self.theta**(torch.arange(
0, self.dim, 2, dtype=torch.float, device=self.inv_freq.device)
/ self.dim))
seq = torch.arange(seqlen,
device=self.inv_freq.device,
dtype=self.inv_freq.dtype)
freqs = torch.outer(seq, self.inv_freq)
self._freqs_cached = freqs
def forward(self, seqlen: int) -> torch.Tensor:
self.update_freqs_cache(seqlen)
return self._freqs_cached[:seqlen]
class Qwen2_5_VisionTransformer(nn.Module):
def __init__(
self,
vision_config: Qwen2_5_VLVisionConfig,
norm_eps: float = 1e-6,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
patch_size = vision_config.patch_size
temporal_patch_size = vision_config.temporal_patch_size
in_channels = vision_config.in_channels
depth = vision_config.depth
self.hidden_size = vision_config.hidden_size
self.num_heads = vision_config.num_heads
# args for get_window_index_thw
self.window_size = vision_config.window_size
self.patch_size = vision_config.patch_size
self.spatial_merge_size = vision_config.spatial_merge_size
self.fullatt_block_indexes = vision_config.fullatt_block_indexes
self.spatial_merge_unit = self.spatial_merge_size**2
self.patch_embed = Qwen2_5_VisionPatchEmbed(
patch_size=patch_size,
temporal_patch_size=temporal_patch_size,
in_channels=in_channels,
hidden_size=self.hidden_size,
)
norm_layer = partial(RMSNorm, eps=norm_eps)
head_dim = self.hidden_size // self.num_heads
self.rotary_pos_emb = Qwen2_5_VisionRotaryEmbedding(head_dim // 2)
self.blocks = nn.ModuleList([
Qwen2_5_VisionBlock(dim=self.hidden_size,
num_heads=self.num_heads,
mlp_hidden_dim=vision_config.intermediate_size,
act_fn=get_act_and_mul_fn(
vision_config.hidden_act),
norm_layer=norm_layer,
quant_config=quant_config,
prefix=f"{prefix}.blocks.{layer_idx}")
for layer_idx in range(depth)
])
self.merger = Qwen2_5_VisionPatchMerger(
d_model=vision_config.out_hidden_size,
context_dim=self.hidden_size,
norm_layer=norm_layer,
spatial_merge_size=self.spatial_merge_size,
quant_config=quant_config,
prefix=f"{prefix}.merger",
)
self.attn_backend: _Backend = get_vit_attn_backend(support_fa=True)
@property
def dtype(self) -> torch.dtype:
return self.patch_embed.proj.weight.dtype
@property
def device(self) -> torch.device:
return self.patch_embed.proj.weight.device
def rotary_pos_emb_thw(self, t, h, w):
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
hpos_ids = hpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
).permute(0, 2, 1, 3).flatten()
wpos_ids = wpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
).permute(0, 2, 1, 3).flatten()
pos_ids = torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)
max_size = max(h, w)
rotary_pos_emb_full = self.rotary_pos_emb(max_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
rotary_pos_emb = rotary_pos_emb.reshape(
rotary_pos_emb.shape[0] // self.spatial_merge_unit,
self.spatial_merge_unit, -1)
return rotary_pos_emb
def get_window_index_thw(self, grid_t, grid_h, grid_w):
vit_merger_window_size = (self.window_size //
self.spatial_merge_size // self.patch_size)
llm_grid_h = grid_h // self.spatial_merge_size
llm_grid_w = grid_w // self.spatial_merge_size
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(
grid_t, llm_grid_h, llm_grid_w)
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
index_padded = F.pad(index, (0, pad_w, 0, pad_h), 'constant', -100)
index_padded = index_padded.reshape(grid_t, num_windows_h,
vit_merger_window_size,
num_windows_w,
vit_merger_window_size)
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
grid_t, num_windows_h * num_windows_w, vit_merger_window_size,
vit_merger_window_size)
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
index_padded = index_padded.reshape(-1)
index_new = index_padded[index_padded != -100]
cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_unit
cu_seqlens_tmp = cu_seqlens_tmp.to(dtype=torch.int32)
cu_seqlens_tmp = torch.unique_consecutive(cu_seqlens_tmp)
return index_new, cu_seqlens_tmp
@lru_cache(maxsize=1024) # noqa: B019
def get_rope_by_thw(self, t, h, w):
window_index_thw, cu_seqlens_window_thw = self.get_window_index_thw(
t, h, w)
rotary_pos_emb_thw = self.rotary_pos_emb_thw(t, h, w)
rotary_pos_emb_thw = rotary_pos_emb_thw[window_index_thw, :, :]
rotary_pos_emb_thw = rotary_pos_emb_thw.flatten(start_dim=0, end_dim=1)
cu_seqlens_thw = torch.repeat_interleave(
torch.tensor([h * w], dtype=torch.int32), t)
return (rotary_pos_emb_thw, window_index_thw, cu_seqlens_window_thw,
cu_seqlens_thw)
def compute_attn_mask_seqlen(
self,
cu_seqlens: torch.Tensor,
) -> tuple[Optional[int], Optional[list[int]]]:
max_seqlen, seqlens = None, None
if (self.attn_backend == _Backend.FLASH_ATTN
or self.attn_backend == _Backend.ROCM_AITER_FA):
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
elif self.attn_backend == _Backend.XFORMERS:
seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
return max_seqlen, seqlens
def forward(
self,
x: torch.Tensor,
grid_thw: list[list[int]],
) -> torch.Tensor:
# patchify
seq_len, _ = x.size()
rotary_pos_emb = []
window_index: list = []
cu_window_seqlens: list = [torch.tensor([0], dtype=torch.int32)]
cu_seqlens: list = []
hidden_states = x.to(device=self.device, dtype=self.dtype)
hidden_states = self.patch_embed(hidden_states)
window_index_id = 0
cu_window_seqlens_last = 0
for t, h, w in grid_thw:
t, h, w = int(t), int(h), int(w)
llm_h = h // self.spatial_merge_size
llm_w = w // self.spatial_merge_size
(
rotary_pos_emb_thw,
window_index_thw,
cu_seqlens_window_thw,
cu_seqlens_thw,
) = self.get_rope_by_thw(t, h, w)
window_index.append(window_index_thw + window_index_id)
window_index_id += (t * llm_h * llm_w)
cu_seqlens_window_thw = (cu_seqlens_window_thw +
cu_window_seqlens_last)
cu_window_seqlens_last = cu_seqlens_window_thw[-1]
cu_window_seqlens.append(cu_seqlens_window_thw)
rotary_pos_emb.append(rotary_pos_emb_thw)
cu_seqlens.append(cu_seqlens_thw)
rotary_pos_emb = torch.cat(rotary_pos_emb)
window_index = torch.cat(window_index)
cu_window_seqlens = torch.cat(cu_window_seqlens)
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
cu_seqlens = torch.cat(cu_seqlens)
cu_seqlens = torch.cumsum(cu_seqlens, dim=0, dtype=torch.int32)
cu_seqlens = F.pad(cu_seqlens, (1, 0), "constant", 0)
# transformers
# pre-compute seqlens for window/full attn to reduce cuMemcpy operations
max_seqlen_full, seqlens_full = self.compute_attn_mask_seqlen(
cu_seqlens)
max_seqlen_window, seqlens_window = self.compute_attn_mask_seqlen(
cu_window_seqlens)
cu_seqlens = cu_seqlens.to(device=self.device, non_blocking=True)
cu_window_seqlens = cu_window_seqlens.to(device=self.device,
non_blocking=True)
rotary_pos_emb = rotary_pos_emb.to(device=self.device,
non_blocking=True)
window_index = window_index.to(device=hidden_states.device,
non_blocking=True)
hidden_states = hidden_states.reshape(
seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
hidden_states = hidden_states[window_index, :, :]
hidden_states = hidden_states.reshape(seq_len, -1)
hidden_states = hidden_states.unsqueeze(1)
for layer_num, blk in enumerate(self.blocks):
if layer_num in self.fullatt_block_indexes:
cu_seqlens_now = cu_seqlens
max_seqlen_now = max_seqlen_full
seqlens_now = seqlens_full
else:
cu_seqlens_now = cu_window_seqlens
max_seqlen_now = max_seqlen_window
seqlens_now = seqlens_window
hidden_states = blk(
hidden_states,
cu_seqlens=cu_seqlens_now,
rotary_pos_emb=rotary_pos_emb,
max_seqlen=max_seqlen_now,
seqlens=seqlens_now,
)
# For Qwen2.5-VL-3B, float16 will overflow at last block
# for long visual tokens sequences.
if hidden_states.dtype == torch.float16:
hidden_states = cast_overflow_tensors(hidden_states)
# adapter
hidden_states = self.merger(hidden_states)
reverse_indices = torch.argsort(window_index)
hidden_states = hidden_states[reverse_indices, :]
return hidden_states
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("attn.qkv.", "attn.q.", "q"),
("attn.qkv.", "attn.k.", "k"),
("attn.qkv.", "attn.v.", "v"),
("mlp.gate_up_proj.", "mlp.gate_proj.", 0),
("mlp.gate_up_proj.", "mlp.up_proj.", 1),
]
params_dict = dict(self.named_parameters(remove_duplicate=False))
loaded_params: set[str] = set()
for name, loaded_weight in weights:
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class Qwen2_5_VLProcessingInfo(Qwen2VLProcessingInfo):
def get_hf_config(self):
return self.ctx.get_hf_config(Qwen2_5_VLConfig)
def get_hf_processor(self, **kwargs: object) -> Qwen2_5_VLProcessor:
return self.ctx.get_hf_processor(
Qwen2_5_VLProcessor,
use_fast=kwargs.pop("use_fast", True),
**kwargs,
)
class Qwen2_5_VLMultiModalProcessor(Qwen2VLMultiModalProcessor):
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
return dict(
**super()._get_mm_fields_config(hf_inputs, hf_processor_mm_kwargs),
second_per_grid_ts=MultiModalFieldConfig.batched("video"),
)
@MULTIMODAL_REGISTRY.register_processor(
Qwen2_5_VLMultiModalProcessor,
info=Qwen2_5_VLProcessingInfo,
dummy_inputs=Qwen2_5_VLDummyInputsBuilder)
class Qwen2_5_VLForConditionalGeneration(nn.Module, SupportsMultiModal,
SupportsLoRA, SupportsPP,
SupportsQuant):
# To ensure correct weight loading and mapping.
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_prefix={
# mapping for new names in checkpoint saved after transformers v4.52
"model.language_model.": "language_model.model.",
"model.visual.": "visual.",
# mapping for original checkpoint
"lm_head.": "language_model.lm_head.",
"model.": "language_model.model.",
})
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
if modality.startswith("image"):
return "<|vision_start|><|image_pad|><|vision_end|>"
if modality.startswith("video"):
return "<|vision_start|><|video_pad|><|vision_end|>"
raise ValueError("Only image or video modality is supported")
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config: Qwen2_5_VLConfig = vllm_config.model_config.hf_config
multimodal_config = vllm_config.model_config.multimodal_config
self.config = config
self.multimodal_config = multimodal_config
if multimodal_config.get_limit_per_prompt("image") or \
multimodal_config.get_limit_per_prompt("video"):
self.visual = Qwen2_5_VisionTransformer(
config.vision_config,
norm_eps=getattr(config, "rms_norm_eps", 1e-6),
quant_config=self._maybe_ignore_quant_config(
self.quant_config),
prefix=maybe_prefix(prefix, "visual"),
)
else:
self.visual = None
self.language_model = init_vllm_registered_model(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "language_model"),
architectures=["Qwen2ForCausalLM"],
)
self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors)
def _maybe_ignore_quant_config(self, config: Optional[QuantizationConfig]):
# GPTQ configs do not have a list of ignored modules, however AutoGPTQ
# seems to avoid vision encoder sections for some models.
if isinstance(config, (GPTQConfig, GPTQMarlinConfig)):
return None
return config
def _validate_and_reshape_mm_tensor(self, mm_input: object,
name: str) -> torch.Tensor:
if not isinstance(mm_input, (torch.Tensor, list)):
raise ValueError(f"Incorrect type of {name}. "
f"Got type: {type(mm_input)}")
if isinstance(mm_input, torch.Tensor):
if mm_input.ndim == 2:
return mm_input
if mm_input.ndim != 3:
raise ValueError(f"{name} should be 2D or batched 3D tensor. "
f"Got ndim: {mm_input.ndim} "
f"(shape={mm_input.shape})")
return torch.concat(list(mm_input))
else:
return torch.concat(mm_input)
def _parse_and_validate_image_input(
self, **kwargs: object) -> Optional[Qwen2_5_VLImageInputs]:
pixel_values = kwargs.pop("pixel_values", None)
image_embeds = kwargs.pop("image_embeds", None)
image_grid_thw = kwargs.pop("image_grid_thw", None)
if pixel_values is None and image_embeds is None:
return None
if pixel_values is not None:
pixel_values = self._validate_and_reshape_mm_tensor(
pixel_values, "image pixel values")
image_grid_thw = self._validate_and_reshape_mm_tensor(
image_grid_thw, "image grid_thw")
if not isinstance(pixel_values, (torch.Tensor, list)):
raise ValueError("Incorrect type of image pixel values. "
f"Got type: {type(pixel_values)}")
return Qwen2_5_VLImagePixelInputs(type="pixel_values",
pixel_values=pixel_values,
image_grid_thw=image_grid_thw)
if image_embeds is not None:
image_embeds = self._validate_and_reshape_mm_tensor(
image_embeds, "image embeds")
image_grid_thw = self._validate_and_reshape_mm_tensor(
image_grid_thw, "image grid_thw")
if not isinstance(image_embeds, torch.Tensor):
raise ValueError("Incorrect type of image embeddings. "
f"Got type: {type(image_embeds)}")
return Qwen2_5_VLImageEmbeddingInputs(
type="image_embeds",
image_embeds=image_embeds,
image_grid_thw=image_grid_thw)
def _parse_and_validate_video_input(
self, **kwargs: object) -> Optional[Qwen2_5_VLVideoInputs]:
pixel_values_videos = kwargs.pop("pixel_values_videos", None)
video_embeds = kwargs.pop("video_embeds", None)
video_grid_thw = kwargs.pop("video_grid_thw", None)
second_per_grid_ts = kwargs.pop("second_per_grid_ts", None)
if pixel_values_videos is None and video_embeds is None:
return None
if pixel_values_videos is not None:
pixel_values_videos = self._validate_and_reshape_mm_tensor(
pixel_values_videos, "video pixel values")
video_grid_thw = self._validate_and_reshape_mm_tensor(
video_grid_thw, "video grid_thw")
return Qwen2_5_VLVideoPixelInputs(
type="pixel_values_videos",
pixel_values_videos=pixel_values_videos,
video_grid_thw=video_grid_thw,
second_per_grid_ts=second_per_grid_ts,
)
if video_embeds is not None:
video_embeds = self._validate_and_reshape_mm_tensor(
video_embeds, "video embeds")
video_grid_thw = self._validate_and_reshape_mm_tensor(
video_grid_thw, "video grid_thw")
if not isinstance(video_embeds, torch.Tensor):
raise ValueError("Incorrect type of video embeddings. "
f"Got type: {type(video_embeds)}")
return Qwen2_5_VLVideoEmbeddingInputs(
type="video_embeds",
video_embeds=video_embeds,
video_grid_thw=video_grid_thw)
def _process_image_input(
self,
image_input: Qwen2_5_VLImageInputs) -> tuple[torch.Tensor, ...]:
grid_thw = image_input["image_grid_thw"]
assert grid_thw.ndim == 2
grid_thw_list = grid_thw.tolist()
if image_input["type"] == "image_embeds":
image_embeds = image_input["image_embeds"].type(self.visual.dtype)
else:
pixel_values = image_input["pixel_values"]
image_embeds = self.visual(pixel_values, grid_thw=grid_thw_list)
# Split concatenated embeddings for each image item.
# Using prod on grid_thw_list instead of grid_thw.prod avoids CUDA sync
merge_size = self.visual.spatial_merge_size
sizes = (torch.tensor(grid_thw_list, dtype=torch.long).prod(-1) //
(merge_size * merge_size)).tolist()
return image_embeds.split(sizes)
def _process_video_input(
self,
video_input: Qwen2_5_VLVideoInputs) -> tuple[torch.Tensor, ...]:
grid_thw = video_input["video_grid_thw"]
assert grid_thw.ndim == 2
grid_thw_list = grid_thw.tolist()
if video_input["type"] == "video_embeds":
video_embeds = video_input["video_embeds"].type(self.visual.dtype)
else:
pixel_values_videos = video_input["pixel_values_videos"]
video_embeds = self.visual(pixel_values_videos,
grid_thw=grid_thw_list)
# Split concatenated embeddings for each video item.
merge_size = self.visual.spatial_merge_size
# Using prod on grid_thw_list instead of grid_thw.prod avoids CUDA sync
sizes = (torch.tensor(grid_thw_list, dtype=torch.long).prod(-1) //
(merge_size * merge_size)).tolist()
return video_embeds.split(sizes)
def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
mm_input_by_modality = {}
# Preserve the order of modalities if there are multiple of them
# from the order of kwargs.
for input_key in kwargs:
if input_key in ("pixel_values", "image_embeds"
) and "image" not in mm_input_by_modality:
mm_input_by_modality[
"image"] = self._parse_and_validate_image_input(**kwargs)
if input_key in ("pixel_values_videos", "video_embeds"
) and "video" not in mm_input_by_modality:
mm_input_by_modality[
"video"] = self._parse_and_validate_video_input(**kwargs)
return mm_input_by_modality
def get_language_model(self) -> torch.nn.Module:
return self.language_model
def get_multimodal_embeddings(self,
**kwargs: object) -> MultiModalEmbeddings:
mm_input_by_modality = self._parse_and_validate_multimodal_inputs(
**kwargs)
if not mm_input_by_modality:
return []
# The result multimodal_embeddings is tuple of tensors, with each
# tensor correspoending to a multimodal data item (image or video).
multimodal_embeddings: tuple[torch.Tensor, ...] = ()
# NOTE: It is important to iterate over the keys in this dictionary
# to preserve the order of the modalities.
for modality in mm_input_by_modality:
multimodal_input = mm_input_by_modality[modality]
if modality == "image":
vision_embeddings = self._process_image_input(multimodal_input)
multimodal_embeddings += vision_embeddings
if modality == "video":
video_embeddings = self._process_video_input(multimodal_input)
multimodal_embeddings += video_embeddings
return multimodal_embeddings
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
) -> torch.Tensor:
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
if multimodal_embeddings is not None \
and len(multimodal_embeddings) != 0:
inputs_embeds = merge_multimodal_embeddings(
input_ids, inputs_embeds, multimodal_embeddings,
[self.config.image_token_id, self.config.video_token_id])
return inputs_embeds
def get_input_embeddings_v0(
self,
input_ids: torch.Tensor,
image_input: Optional[Qwen2_5_VLImageInputs] = None,
video_input: Optional[Qwen2_5_VLVideoInputs] = None,
) -> torch.Tensor:
inputs_embeds = self.get_input_embeddings(input_ids)
if image_input is not None:
image_embeds = self._process_image_input(image_input)
inputs_embeds = merge_multimodal_embeddings(
input_ids,
inputs_embeds,
image_embeds,
placeholder_token_id=self.config.image_token_id,
)
if video_input is not None:
video_embeds = self._process_video_input(video_input)
inputs_embeds = merge_multimodal_embeddings(
input_ids,
inputs_embeds,
video_embeds,
placeholder_token_id=self.config.video_token_id,
)
return inputs_embeds
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
"""Run forward pass for Qwen2.5-VL.
Args:
input_ids: Flattened (concatenated) input_ids corresponding to a
batch.
positions: Flattened (concatenated) position ids corresponding to a
batch.
**NOTE**: If mrope is enabled (default setting for Qwen2.5-VL
opensource models), the shape will be `(3, seq_len)`,
otherwise it will be `(seq_len,).
pixel_values: Pixel values to be fed to a model.
`None` if no images are passed.
image_grid_thw: Tensor `(n_images, 3)` of image 3D grid in LLM.
`None` if no images are passed.
pixel_values_videos: Pixel values of videos to be fed to a model.
`None` if no videos are passed.
video_grid_thw: Tensor `(n_videos, 3)` of video 3D grid in LLM.
`None` if no videos are passed.
second_per_grid_ts: Tensor `(num_videos)` of video time interval (
in seconds) for each grid along the temporal dimension in the
3D position IDs. `None` if no videos are passed.
"""
if intermediate_tensors is not None:
inputs_embeds = None
# NOTE: In v1, inputs_embeds is always generated at model runner from
# `get_multimodal_embeddings` and `get_input_embeddings`, this
# condition is only for v0 compatibility.
elif inputs_embeds is None:
image_input = self._parse_and_validate_image_input(**kwargs)
video_input = self._parse_and_validate_video_input(**kwargs)
if image_input is None and video_input is None:
inputs_embeds = None
else:
if uses_mrope(self.config):
assert positions.ndim == 2 and positions.size(0) == 3, (
"multimodal section rotary embedding requires "
f"(3, seq_len) positions, but got {positions.size()}")
inputs_embeds = self.get_input_embeddings_v0(
input_ids,
image_input=image_input,
video_input=video_input)
input_ids = None
hidden_states = self.language_model.model(
input_ids=input_ids,
positions=positions,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds,
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
return self.language_model.compute_logits(hidden_states,
sampling_metadata)
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
skip_prefixes = []
if self.visual is None:
skip_prefixes.extend(["visual."])
loader = AutoWeightsLoader(self, skip_prefixes=skip_prefixes)
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
def get_mm_mapping(self) -> MultiModelKeys:
"""
Get the module prefix in multimodal models
"""
return MultiModelKeys.from_string_field(
language_model="language_model",
connector="visual.merger.",
tower_model="visual.",
)