vllm/vllm/attention/backends/dual_chunk_flash_attn.py
2025-07-23 06:34:37 -07:00

1499 lines
65 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Attention layer with Dual chunk flash attention and sparse attention.
"""
import math
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type
import torch
import torch.distributed
import torch.nn.functional as F
from vllm import _custom_ops as ops
from vllm.attention.backends.abstract import AttentionLayer, AttentionType
from vllm.attention.backends.flash_attn import (FlashAttentionBackend,
FlashAttentionImpl,
FlashAttentionMetadata,
FlashAttentionMetadataBuilder)
from vllm.distributed.parallel_state import get_tensor_model_parallel_rank
from vllm.logger import init_logger
from vllm.utils import async_tensor_h2d
from vllm.vllm_flash_attn import (flash_attn_varlen_func,
flash_attn_with_kvcache, sparse_attn_func)
if TYPE_CHECKING:
from vllm.worker.model_runner import ModelInputForGPUBuilder
logger = init_logger(__name__)
class DualChunkFlashAttentionBackend(FlashAttentionBackend):
accept_output_buffer: bool = False
@staticmethod
def get_name() -> str:
return "DUAL_CHUNK_FLASH_ATTN"
@staticmethod
def get_impl_cls() -> Type["DualChunkFlashAttentionImpl"]:
return DualChunkFlashAttentionImpl
@staticmethod
def get_metadata_cls() -> Type["DualChunkFlashAttentionMetadata"]:
return DualChunkFlashAttentionMetadata
@staticmethod
def get_builder_cls() -> Type["DualChunkFlashAttentionMetadataBuilder"]:
return DualChunkFlashAttentionMetadataBuilder
@dataclass
class DualChunkFlashAttentionMetadata(FlashAttentionMetadata):
# Block size of the paged kv cache.
block_size: int = 16
# Original max position embeddings.
original_max_position_embeddings: int = 0
# Chunk size
chunk_size: int = 8192
# Local size
local_size: int = 1024
# (batch_size,). The orig sequence length per sequence.
orig_seq_lens: Optional[List[int]] = None
# orig_seq_lens stored as a tensor.
orig_seq_lens_tensor: Optional[torch.Tensor] = None
# Length scaling factor
scaling_factor: Optional[torch.Tensor] = None
# (batch_size,). Sequence lengths for intra attention.
seq_lens_intra: Optional[torch.Tensor] = None
# Max sequence length for intra attention.
max_seq_len_intra: Optional[int] = None
# (batch_size, num_blocks). Block table for intra attention.
block_tables_intra: Optional[torch.Tensor] = None
# (batch_size,). Sequence lengths for succ attention.
seq_lens_succ: Optional[torch.Tensor] = None
# Max sequence length for succ attention.
max_seq_len_succ: Optional[int] = None
# (batch_size, num_blocks). Block table for succ attention.
block_tables_succ: Optional[torch.Tensor] = None
# (batch_size,). Sequence lengths for inter attention.
seq_lens_inter: Optional[torch.Tensor] = None
# Max sequence length for inter attention.
max_seq_len_inter: Optional[int] = None
_cached_prefill_metadata: Optional[
"DualChunkFlashAttentionMetadata"] = None
_cached_decode_metadata: Optional["DualChunkFlashAttentionMetadata"] = None
@property
def prefill_metadata(self) -> Optional["DualChunkFlashAttentionMetadata"]:
if self.num_prefills == 0:
return None
if self._cached_prefill_metadata is not None:
return self._cached_prefill_metadata
prefill_metadata = super().prefill_metadata
if prefill_metadata is None:
return None
prefill_metadata = DualChunkFlashAttentionMetadata(
**prefill_metadata.asdict_zerocopy())
prefill_metadata.orig_seq_lens = (
None if self.orig_seq_lens is None else
self.orig_seq_lens[:self.num_prefills])
prefill_metadata.orig_seq_lens_tensor = (
None if self.orig_seq_lens_tensor is None else
self.orig_seq_lens_tensor[:self.num_prefills])
if self.original_max_position_embeddings > 0:
assert prefill_metadata.orig_seq_lens_tensor is not None
prefill_metadata.scaling_factor = (
0.1 * torch.log(prefill_metadata.orig_seq_lens_tensor /
self.original_max_position_embeddings) +
1.0).clip(min=1)
self._cached_prefill_metadata = prefill_metadata
return prefill_metadata
@property
def decode_metadata(self) -> Optional["DualChunkFlashAttentionMetadata"]:
if self.num_decode_tokens == 0:
return None
if self._cached_decode_metadata is not None:
return self._cached_decode_metadata
decode_metadata = super().decode_metadata
if decode_metadata is None:
return None
decode_metadata = DualChunkFlashAttentionMetadata(
**decode_metadata.asdict_zerocopy())
decode_metadata.orig_seq_lens_tensor = (
None if self.orig_seq_lens_tensor is None else
self.orig_seq_lens_tensor[self.num_prefills:])
assert decode_metadata.orig_seq_lens_tensor is not None
assert decode_metadata.block_tables is not None
cache_seq_lens = decode_metadata.orig_seq_lens_tensor
chunk_len = self.chunk_size - self.local_size
chunk_num_curr = (cache_seq_lens - 1) // chunk_len
batch_size = decode_metadata.num_decode_tokens
if self.original_max_position_embeddings > 0:
decode_metadata.scaling_factor = (0.1 * torch.log(
cache_seq_lens / self.original_max_position_embeddings) +
1.0).clip(min=1)
seq_lens_intra = cache_seq_lens - chunk_num_curr * chunk_len
max_seq_len_intra = seq_lens_intra.max().item()
decode_metadata.seq_lens_intra = seq_lens_intra
decode_metadata.max_seq_len_intra = max_seq_len_intra
block_tables_intra = torch.zeros(
batch_size,
(max_seq_len_intra - 1) // self.block_size + 1,
dtype=decode_metadata.block_tables.dtype,
device=decode_metadata.block_tables.device,
)
for i in range(batch_size):
st = chunk_num_curr[i] * chunk_len // self.block_size
ed = min(
st + (max_seq_len_intra - 1) // self.block_size + 1,
(cache_seq_lens[i] - 1) // self.block_size + 1,
)
block_tables_intra[i, :ed -
st] = decode_metadata.block_tables[i, st:ed]
decode_metadata.block_tables_intra = block_tables_intra
seq_lens_succ = (chunk_num_curr -
(chunk_num_curr - 1).clip(min=0)) * chunk_len
max_seq_len_succ = seq_lens_succ.max().item()
decode_metadata.seq_lens_succ = seq_lens_succ
decode_metadata.max_seq_len_succ = max_seq_len_succ
if max_seq_len_succ:
block_tables_succ = torch.zeros(
batch_size,
(max_seq_len_succ - 1) // self.block_size + 1,
dtype=decode_metadata.block_tables.dtype,
device=decode_metadata.block_tables.device,
)
for i in range(batch_size):
start = ((chunk_num_curr[i] - 1).clip(min=0) * chunk_len //
self.block_size)
end = min(
start + (max_seq_len_succ - 1) // self.block_size + 1,
(cache_seq_lens[i] - 1) // self.block_size + 1,
)
block_tables_succ[
i, :end - start] = decode_metadata.block_tables[i,
start:end]
decode_metadata.block_tables_succ = block_tables_succ
seq_lens_inter = (chunk_num_curr - 1).clip(min=0) * chunk_len
max_seq_len_inter = seq_lens_inter.max().item()
decode_metadata.seq_lens_inter = seq_lens_inter
decode_metadata.max_seq_len_inter = max_seq_len_inter
self._cached_decode_metadata = decode_metadata
return decode_metadata
class DualChunkFlashAttentionMetadataBuilder(FlashAttentionMetadataBuilder):
def prepare(self):
super().prepare()
self.orig_seq_lens: List[int] = []
def _add_seq_group(
self, inter_data: "ModelInputForGPUBuilder.InterDataForSeqGroup",
chunked_prefill_enabled: bool, prefix_cache_hit: bool):
super()._add_seq_group(inter_data, chunked_prefill_enabled,
prefix_cache_hit)
for prompt_len, seq_len in zip(inter_data.prompt_lens,
inter_data.seq_lens):
self.orig_seq_lens.append(max(prompt_len, seq_len))
def build(self, seq_lens: List[int], query_lens: List[int],
cuda_graph_pad_size: int, batch_size: int):
attn_metadata = super().build(seq_lens, query_lens,
cuda_graph_pad_size, batch_size)
attn_metadata = DualChunkFlashAttentionMetadata(
**attn_metadata.asdict_zerocopy())
device = self.runner.device
attn_metadata.orig_seq_lens = self.orig_seq_lens
attn_metadata.orig_seq_lens_tensor = async_tensor_h2d(
self.orig_seq_lens, torch.int, device, self.runner.pin_memory)
attn_metadata.block_size = self.runner.block_size
dual_chunk_attn_config = getattr(self.runner.model_config.hf_config,
"dual_chunk_attention_config", {})
attn_metadata.original_max_position_embeddings = \
dual_chunk_attn_config.get("original_max_position_embeddings", 0)
attn_metadata.chunk_size = dual_chunk_attn_config.get(
"chunk_size", 8192)
attn_metadata.local_size = dual_chunk_attn_config.get(
"local_size", 1024)
return attn_metadata
class DualChunkFlashAttentionImpl(FlashAttentionImpl):
"""
If the input tensors contain prompt tokens, the layout is as follows:
|<--------------- num_prefill_tokens ----------------->|
|<--prefill_0-->|<--prefill_1-->|...|<--prefill_N-1--->|
Otherwise, the layout is as follows:
|<----------------- num_decode_tokens ------------------>|
|<--decode_0-->|..........|<--decode_M-1-->|<--padding-->|
Generation tokens can contain padding when cuda-graph is used.
Currently, prompt tokens don't contain any padding.
The prompts might have different lengths, while the generation tokens
always have length 1.
If chunked prefill is enabled, prefill tokens and decode tokens can be
batched together in a flattened 1D query.
|<----- num_prefill_tokens ---->|<------- num_decode_tokens --------->|
|<-prefill_0->|...|<-prefill_N-1->|<--decode_0-->|...|<--decode_M-1-->|
Currently, cuda graph is disabled for chunked prefill, meaning there's no
padding between prefill and decode tokens.
"""
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[List[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
logits_soft_cap: Optional[float] = None,
attn_type: str = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[str] = None,
layer_idx: int = -1,
dual_chunk_attention_config: Optional[Dict[str, Any]] = None,
) -> None:
if kv_sharing_target_layer_name is not None:
raise NotImplementedError("KV sharing is not supported in V0 "
"DUAL_CHUNK_FLASH_ATTN backend.")
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.num_kv_heads = num_kv_heads
if alibi_slopes is not None:
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
self.alibi_slopes = alibi_slopes
self.sliding_window = ((sliding_window, sliding_window)
if sliding_window is not None else (-1, -1))
self.kv_cache_dtype = kv_cache_dtype
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
if sliding_window is not None:
# NOTE(woosuk): flash-attn's sliding window does not work with
# paged KV cache.
raise ValueError(
"Sliding window is not supported in FlashAttention.")
support_head_sizes = (
DualChunkFlashAttentionBackend.get_supported_head_sizes())
if head_size not in support_head_sizes:
raise ValueError(
f"Head size {head_size} is not supported by FlashAttention. "
f"Supported head sizes are: {support_head_sizes}.")
assert dual_chunk_attention_config is not None
self.chunk_size = dual_chunk_attention_config.get("chunk_size", 8192)
self.local_size = dual_chunk_attention_config.get("local_size", 1024)
self.original_max_position_embeddings = dual_chunk_attention_config.get(
"original_max_position_embeddings", 0)
self.sparse_attention_config = dual_chunk_attention_config.get(
"sparse_attention_config", None)
if not self.sparse_attention_config:
logger.warning_once("Sparse attention will not be enabled as "
"sparse attention config is not provided.")
self.sparse_attention_enabled = dual_chunk_attention_config.get(
"sparse_attention_enabled", self.sparse_attention_config
is not None)
self.sparse_attention_threshold = dual_chunk_attention_config.get(
"sparse_attention_threshold", 32768)
self.sparse_attention_last_q = dual_chunk_attention_config.get(
"sparse_attention_last_q", 64)
self.layer_idx = layer_idx
self.dual_chunk_attention_config = dual_chunk_attention_config
if self.sparse_attention_config:
self.sparse_attention_config = {
int(i): j
for i, j in self.sparse_attention_config[
self.layer_idx].items()
}
start_head = self.num_heads * get_tensor_model_parallel_rank()
end_head = start_head + self.num_heads
self.sparse_attention_config = [
self.sparse_attention_config[i]
for i in range(start_head, end_head)
]
if self.sparse_attention_enabled:
self.arange = torch.arange(self.sparse_attention_last_q,
device="cuda")
self.last_q_mask = (self.arange[None, None, :, None]
>= self.arange[None, None, None, :])
def forward( # type: ignore
self,
layer: AttentionLayer,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: DualChunkFlashAttentionMetadata,
output: Optional[torch.Tensor] = None,
output_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with DualChunkFlashAttention.
Args:
query: shape = [num_tokens, num_heads * head_size]
query_succ: shape = [num_tokens, num_heads * head_size]
query_inter: shape = [num_tokens, num_heads * head_size]
key: shape = [num_tokens, num_kv_heads * head_size]
value: shape = [num_tokens, num_kv_heads * head_size]
kv_cache = [2, num_blocks, block_size, num_kv_heads * head_size]
attn_metadata: Metadata for attention.
Returns:
shape = [num_tokens, num_heads * head_size]
"""
assert output is None, "Output tensor not supported for DualChunk"
if output_scale is not None:
raise NotImplementedError(
"fused output quantization is not yet supported"
" for FlashAttentionImpl")
(
query,
query_succ,
query_inter,
query_succ_critical,
query_inter_critical,
) = torch.split(query, query.shape[-1] // 5, dim=-1)
assert (
query_succ is not None and query_inter is not None
), "query_succ and query_inter are required in Dual Chunk Attention."
num_tokens, hidden_size = query.shape
# Reshape the query, key, and value tensors.
query = query.view(-1, self.num_heads, self.head_size)
query_succ = query_succ.view(-1, self.num_heads, self.head_size)
query_inter = query_inter.view(-1, self.num_heads, self.head_size)
query_succ_critical = query_succ_critical.view(-1, self.num_heads,
self.head_size)
query_inter_critical = query_inter_critical.view(
-1, self.num_heads, self.head_size)
key = key.view(-1, self.num_kv_heads, self.head_size)
value = value.view(-1, self.num_kv_heads, self.head_size)
if self.original_max_position_embeddings > 0:
if prefill_meta := attn_metadata.prefill_metadata:
assert prefill_meta.scaling_factor is not None
assert prefill_meta.query_start_loc is not None
assert prefill_meta.orig_seq_lens is not None
current_start = 0
query_start_loc_cpu = prefill_meta.query_start_loc.cpu()
for i in range(len(prefill_meta.orig_seq_lens)):
current_end = (current_start +
(query_start_loc_cpu[i + 1] -
query_start_loc_cpu[i]).item())
key[current_start:current_end].mul_(
prefill_meta.scaling_factor[i])
current_start = current_end
assert current_end <= attn_metadata.num_prefill_tokens
if decode_meta := attn_metadata.decode_metadata:
assert decode_meta.scaling_factor is not None
scaling_factor = decode_meta.scaling_factor
key[attn_metadata.num_prefill_tokens:].mul_(
scaling_factor.unsqueeze(-1).unsqueeze(-1))
if kv_cache is not None and kv_cache.numel() > 0:
key_cache = kv_cache[0]
value_cache = kv_cache[1]
# Reshape the input keys and values and store them in the cache.
# If kv_cache is not provided, the new key and value tensors are
# not cached. This happens during the initial memory profiling run.
ops.reshape_and_cache_flash(
key,
value,
key_cache,
value_cache,
attn_metadata.slot_mapping.flatten(),
self.kv_cache_dtype,
layer._k_scale,
layer._v_scale,
)
num_prefill_tokens = attn_metadata.num_prefill_tokens
num_decode_tokens = attn_metadata.num_decode_tokens
assert key.shape[0] == num_prefill_tokens + num_decode_tokens
assert value.shape[0] == num_prefill_tokens + num_decode_tokens
output = torch.empty_like(query)
# Query for decode. KV is not needed because it is already cached.
decode_query = query[num_prefill_tokens:]
decode_query_succ = query_succ[num_prefill_tokens:]
decode_query_inter = query_inter[num_prefill_tokens:]
# QKV for prefill.
query = query[:num_prefill_tokens]
query_succ = query_succ[:num_prefill_tokens]
query_inter = query_inter[:num_prefill_tokens]
query_succ_critical = query_succ_critical[:num_prefill_tokens]
query_inter_critical = query_inter_critical[:num_prefill_tokens]
key = key[:num_prefill_tokens]
value = value[:num_prefill_tokens]
assert query.shape[0] == num_prefill_tokens
assert decode_query.shape[0] == num_decode_tokens
if prefill_meta := attn_metadata.prefill_metadata:
# Prompt run.
if (kv_cache is None or prefill_meta.block_tables is None
or prefill_meta.block_tables.numel() == 0):
# normal attention, called during the profiling run.
out = flash_attn_varlen_func(
q=query,
k=key,
v=value,
cu_seqlens_q=prefill_meta.seq_start_loc,
cu_seqlens_k=prefill_meta.seq_start_loc,
max_seqlen_q=prefill_meta.max_prefill_seq_len,
max_seqlen_k=prefill_meta.max_prefill_seq_len,
softmax_scale=self.scale,
causal=True,
window_size=self.sliding_window,
alibi_slopes=self.alibi_slopes,
)
assert output[:num_prefill_tokens].shape == out.shape
output[:num_prefill_tokens] = out
else:
# prefix-enabled attention
assert prefill_meta.seq_lens is not None
assert prefill_meta.orig_seq_lens is not None
output[:num_prefill_tokens] = (
self._dual_chunk_flash_attn_prefill(
q=query,
q_succ=query_succ,
q_inter=query_inter,
q_succ_critical=query_succ_critical,
q_inter_critical=query_inter_critical,
k=key_cache,
v=value_cache,
cu_seqlens_q=prefill_meta.query_start_loc,
cu_seqlens_k=prefill_meta.seq_start_loc,
orig_seq_lens=prefill_meta.orig_seq_lens,
scaling_factor=prefill_meta.scaling_factor,
softmax_scale=self.scale,
causal=True,
window_size=(-1, -1),
alibi_slopes=self.alibi_slopes,
block_table=prefill_meta.block_tables,
chunk_size=self.chunk_size,
local_size=self.local_size,
))
if decode_meta := attn_metadata.decode_metadata:
# Decoding run.
output[num_prefill_tokens:] = (
self._dual_chunk_flash_attn_decoding(
decode_query.unsqueeze(1),
decode_query_succ.unsqueeze(1),
decode_query_inter.unsqueeze(1),
key_cache,
value_cache,
block_table=decode_meta.block_tables,
cache_seqlens=decode_meta.seq_lens_tensor,
softmax_scale=self.scale,
causal=True,
alibi_slopes=self.alibi_slopes,
chunk_size=self.chunk_size,
local_size=self.local_size,
original_max_position_embeddings=self.
original_max_position_embeddings,
decode_meta=decode_meta,
).squeeze(1))
# Reshape the output tensor.
return output.view(num_tokens, hidden_size)
def _dual_chunk_flash_attn_prefill(
self,
q,
q_succ,
q_inter,
q_succ_critical,
q_inter_critical,
k,
v,
cu_seqlens_q,
cu_seqlens_k,
orig_seq_lens: List[int],
scaling_factor: torch.Tensor,
softmax_scale: float,
causal: Optional[bool] = True,
window_size: Tuple[int, int] = (-1, -1),
alibi_slopes: Optional[torch.Tensor] = None,
block_table: Optional[torch.Tensor] = None,
chunk_size: int = 8192,
local_size: int = 1024,
):
if alibi_slopes is not None:
raise ValueError(
"Dual Chunk Attention does not support alibi_slopes")
if not causal:
raise ValueError(
"Dual Chunk Attention does not support causal=False")
if window_size != (-1, -1):
raise ValueError(
"Dual Chunk Attention does not support window_size")
cu_seqlens_q_cpu = cu_seqlens_q.cpu().tolist()
cu_seqlens_k_cpu = cu_seqlens_k.cpu().tolist()
all_outputs = []
for i in range(0, len(cu_seqlens_q_cpu) - 1):
qs = cu_seqlens_q_cpu[i]
qe = cu_seqlens_q_cpu[i:i + 2][-1]
ks = cu_seqlens_k_cpu[i]
ke = cu_seqlens_k_cpu[i:i + 2][-1]
current_q = q[qs:qe]
current_q_succ = q_succ[qs:qe]
current_q_inter = q_inter[qs:qe]
current_q_succ_critical = q_succ_critical[qs:qe]
current_q_inter_critical = q_inter_critical[qs:qe]
if block_table is None:
current_k = k[ks:ke]
current_v = v[ks:ke]
current_block_table = None
current_orig_seq_len = orig_seq_lens[i]
else:
current_block_table = block_table[i]
current_orig_seq_len = orig_seq_lens[i]
current_k = k
current_v = v
sparse_attn_enabled = (self.sparse_attention_enabled
and current_orig_seq_len
> self.sparse_attention_threshold)
if current_q.shape[0] == 0:
continue
if current_k.shape[0] == 0:
all_outputs.append(
torch.zeros(
(current_q.shape[0], current_q.shape[1], v.shape[2]),
device=q.device,
dtype=q.dtype,
))
continue
current_output = torch.empty_like(current_q)
group_size = int(current_q.size(-2) / current_k.size(-2))
if sparse_attn_enabled:
num_device_q_heads = current_q.size(-2)
heads_vertical_size = torch.empty(size=(num_device_q_heads, ),
dtype=torch.int32)
heads_slash_size = torch.empty(size=(num_device_q_heads, ),
dtype=torch.int32)
for head_id in range(current_q.size(-2)):
(
ty,
vertical_size,
slash_size,
_,
) = self.sparse_attention_config[head_id]
assert ty == "vertical_and_slash", "only support slash mode"
if vertical_size == 30:
vertical_size += 100
heads_vertical_size[head_id] = vertical_size
heads_slash_size[head_id] = slash_size
current_output = self._dual_chunk_flash_attn_prefill_func(
current_q, # allheads
current_q_succ,
current_q_inter,
current_q_succ_critical,
current_q_inter_critical,
current_k,
current_v,
current_block_table,
softmax_scale,
chunk_size,
local_size,
scaling_factor[i].item(),
ke - ks,
sparse_attn_enabled=sparse_attn_enabled,
heads_vertical_size=heads_vertical_size,
heads_slash_size=heads_slash_size,
group_size=group_size)
else:
for head_id in range(current_q.size(-2)):
# (seq_len, num_heads, head_size)
current_q_head = current_q[:, head_id, :].unsqueeze(1)
current_q_succ_head = \
current_q_succ[:, head_id, :].unsqueeze(1)
current_q_inter_head = \
current_q_inter[:, head_id, :].unsqueeze(1)
current_q_succ_head_critical = \
current_q_succ_critical[:, head_id, :].unsqueeze(1)
current_q_inter_head_critical = \
current_q_inter_critical[:, head_id, :].unsqueeze(1)
if block_table is not None:
current_k_head = current_k[..., head_id //
group_size, :].unsqueeze(2)
current_v_head = current_v[..., head_id //
group_size, :].unsqueeze(2)
else:
current_k_head = current_k[:, head_id, :].unsqueeze(1)
current_v_head = current_v[:, head_id, :].unsqueeze(1)
current_out = self._dual_chunk_flash_attn_prefill_func(
current_q_head,
current_q_succ_head,
current_q_inter_head,
current_q_succ_head_critical,
current_q_inter_head_critical,
current_k_head,
current_v_head,
current_block_table,
softmax_scale,
chunk_size,
local_size,
scaling_factor[i].item(),
ke - ks,
sparse_attn_enabled=sparse_attn_enabled,
)
current_output[:, head_id:head_id + 1, :] = current_out
all_outputs.append(current_output)
return torch.cat(all_outputs, dim=0)
def _dual_chunk_flash_attn_prefill_func(
self,
q,
q_succ,
q_inter,
q_succ_critical,
q_inter_critical,
k,
v,
block_table,
softmax_scale: float,
chunk_size: int,
local_size: int,
scaling_factor: float,
k_length: int,
sparse_attn_enabled: Optional[bool] = True,
heads_vertical_size=None,
heads_slash_size=None,
group_size=None,
):
flash_results = []
chunk_len = chunk_size - local_size
if block_table is not None:
block_size = v.shape[1]
if chunk_len % block_size != 0:
raise ValueError("chunk_len must be divisible by block_size.")
else:
block_size = 1
if self.original_max_position_embeddings > 0:
softmax_scale = softmax_scale * scaling_factor
begin = k_length - q.shape[0]
while begin < k_length:
flash_per_chunk = []
prev_chunk_end_pos = (begin // chunk_len) * chunk_len
next_chunk_end_pos = prev_chunk_end_pos + chunk_len
end = min(next_chunk_end_pos, k_length)
qbegin = begin - (k_length - q.shape[0])
qend = end - (k_length - q.shape[0])
qk_chunks = []
q_states_intra = q[qbegin:qend]
# choose critical token
if block_table is not None:
block_tables_intra = _get_block(block_table, block_size,
prev_chunk_end_pos, end)
k_states_intra = k[block_tables_intra].view(
-1, *k.shape[-2:])[:(end - prev_chunk_end_pos)]
v_states_intra = v[block_tables_intra].view(
-1, *v.shape[-2:])[:(end - prev_chunk_end_pos)]
else:
block_tables_intra = None
k_states_intra = k[prev_chunk_end_pos:end]
v_states_intra = v[prev_chunk_end_pos:end]
if sparse_attn_enabled:
last_q_size = min(qend - qbegin, self.sparse_attention_last_q)
_, num_device_k_heads, head_dim = k_states_intra.shape
k_states_intra = (k_states_intra.unsqueeze(2).repeat(
1, 1, group_size,
1).reshape(-1, num_device_k_heads * group_size, head_dim))
v_states_intra = (v_states_intra.unsqueeze(2).repeat(
1, 1, group_size,
1).reshape(-1, num_device_k_heads * group_size, head_dim))
qk_chunks.append(
(q_states_intra.transpose(0, 1)[:, -last_q_size:] *
softmax_scale) @ k_states_intra.permute(1, 2, 0))
if prev_chunk_end_pos - chunk_len >= 0:
q_states_succ = q_succ[qbegin:qend]
q_states_succ_critical = q_succ_critical[qbegin:qend]
if block_table is not None:
block_tables_succ = _get_block(
block_table, block_size,
prev_chunk_end_pos - chunk_len, prev_chunk_end_pos)
k_states_succ = k[block_tables_succ].view(
-1, *k.shape[-2:])[:chunk_len]
v_states_succ = v[block_tables_succ].view(
-1, *v.shape[-2:])[:chunk_len]
else:
k_states_succ = k[prev_chunk_end_pos -
chunk_len:prev_chunk_end_pos]
v_states_succ = v[prev_chunk_end_pos -
chunk_len:prev_chunk_end_pos]
if sparse_attn_enabled:
k_states_succ = (k_states_succ.unsqueeze(2).repeat(
1, 1, group_size,
1).reshape(-1, num_device_k_heads * group_size,
head_dim))
v_states_succ = (v_states_succ.unsqueeze(2).repeat(
1, 1, group_size,
1).reshape(-1, num_device_k_heads * group_size,
head_dim))
qk_chunks.append((q_states_succ_critical.transpose(
0, 1)[:, -last_q_size:] * softmax_scale)
@ k_states_succ.permute(1, 2, 0))
if prev_chunk_end_pos - chunk_len * 2 >= 0:
q_states_inter = q_inter[qbegin:qend]
q_states_inter_critical = q_inter_critical[qbegin:qend]
if block_table is not None:
block_tables_inter = _get_block(
block_table, block_size, 0,
prev_chunk_end_pos - chunk_len)
k_states_inter = k[block_tables_inter].view(
-1, *k.shape[-2:])[:(prev_chunk_end_pos - chunk_len)]
v_states_inter = v[block_tables_inter].view(
-1, *v.shape[-2:])[:(prev_chunk_end_pos - chunk_len)]
else:
k_states_inter = k[:prev_chunk_end_pos - chunk_len]
v_states_inter = v[:prev_chunk_end_pos - chunk_len]
if sparse_attn_enabled:
k_states_inter = (k_states_inter.unsqueeze(2).repeat(
1, 1, group_size,
1).reshape(-1, num_device_k_heads * group_size,
head_dim))
v_states_inter = (v_states_inter.unsqueeze(2).repeat(
1, 1, group_size,
1).reshape(-1, num_device_k_heads * group_size,
head_dim))
qk_chunks.append((q_states_inter_critical.transpose(
0, 1)[:, -last_q_size:] * softmax_scale)
@ k_states_inter.permute(1, 2, 0))
if sparse_attn_enabled:
reversed_qk = qk_chunks[::-1]
qk = torch.cat(reversed_qk, dim=-1)
qk[:, :, -last_q_size:] = torch.where(
self.last_q_mask[..., -last_q_size:,
-last_q_size:].to(qk.device),
qk[:, :, -last_q_size:], -torch.inf)
qk = F.softmax(qk, dim=-1, dtype=torch.float32)
vertical = qk.sum(-2, keepdim=True)
vertical[..., :30] = torch.inf
# Avoid sorting by using the min/max ints to fill the indexer
# buffers.
int32_max = torch.iinfo(torch.int32).max
int32_min = torch.iinfo(torch.int32).min
n_heads = qk.size()[0]
max_slash_topk = torch.max(heads_slash_size).item()
max_vertical_topk = torch.max(heads_vertical_size).item()
# store each head's slash topk, vertical topk
vertical = vertical.reshape((n_heads, -1))
# prevent out of range when prompt size < max_vertical_topk
max_vertical_topk = min(vertical.shape[-1], max_vertical_topk)
vertical_topk_buffer = torch.topk(vertical, max_vertical_topk,
-1).indices
slash_topk_buffer = torch.empty(size=(n_heads, max_slash_topk),
dtype=torch.int64,
device=qk.device)
for head_i in range(n_heads):
# (nqheads=1, lastq, k_len)
head_score = qk[head_i:head_i + 1, :, :]
slash_scores = _sum_all_diagonal_matrix(head_score)
if head_score.size(1) != 1:
# drop right up corner
slash_scores = slash_scores[..., :-last_q_size + 1]
slash_scores[..., -100:] = torch.inf
head_slash_size = heads_slash_size[head_i]
head_slash_size = min(head_slash_size, vertical.size(-1))
slash_topk = torch.topk(slash_scores, head_slash_size,
-1).indices
#nheads, max_topk
slash_topk_buffer[head_i, :head_slash_size] = slash_topk
# reset heads topk
heads_slash_size[head_i] = head_slash_size
heads_vertical_size[head_i] = min(
heads_vertical_size[head_i], max_vertical_topk)
# store
vertical_buffer = torch.full((n_heads, max_vertical_topk),
int32_max,
dtype=torch.int64,
device=q.device)
slash_buffer = torch.full((n_heads, max_slash_topk),
int32_min,
dtype=torch.int64,
device=q.device)
succ_vertical_buffer = torch.full((n_heads, max_vertical_topk),
int32_max,
dtype=torch.int64,
device=q.device)
succ_slash_buffer = torch.full((n_heads, max_slash_topk),
int32_min,
dtype=torch.int64,
device=q.device)
inter_vertical_buffer = torch.full(
(n_heads, max_vertical_topk),
int32_max,
dtype=torch.int64,
device=q.device)
inter_slash_buffer = torch.full((n_heads, max_slash_topk),
int32_min,
dtype=torch.int64,
device=q.device)
vertical_size_buffer = torch.empty(size=(n_heads, ),
dtype=torch.int32,
device=q.device)
slash_sizes_buffer = torch.empty(size=(n_heads, ),
dtype=torch.int32,
device=q.device)
succ_vertical_size_buffer = torch.empty(size=(n_heads, ),
dtype=torch.int32,
device=q.device)
succ_slash_sizes_buffer = torch.empty(size=(n_heads, ),
dtype=torch.int32,
device=q.device)
inter_vertical_size_buffer = torch.empty(size=(n_heads, ),
dtype=torch.int32,
device=q.device)
inter_slash_sizes_buffer = torch.empty(size=(n_heads, ),
dtype=torch.int32,
device=q.device)
for head_i in range(n_heads):
vertical_topk = vertical_topk_buffer[
head_i, :heads_vertical_size[head_i]]
# intra
intra_vertical_indices = vertical_topk[
vertical_topk >=
prev_chunk_end_pos] - prev_chunk_end_pos
if intra_vertical_indices.nelement() == 0:
intra_vertical_indices = torch.cat([
intra_vertical_indices,
torch.arange(0,
k_states_intra.size(0),
max(1,
k_states_intra.size(0) / 5),
dtype=torch.int32,
device=intra_vertical_indices.device)
])
slash_topk = slash_topk_buffer[
head_i, :heads_slash_size[head_i]]
intra_slash_indices = (
(qk.size(-1) - 1) -
slash_topk[slash_topk >= prev_chunk_end_pos])
# fill buffer
v_count = intra_vertical_indices.nelement()
s_count = intra_slash_indices.nelement()
vertical_size_buffer[head_i] = v_count
slash_sizes_buffer[head_i] = s_count
vertical_buffer[head_i, :v_count].copy_(
intra_vertical_indices)
slash_buffer[head_i, :s_count].copy_(intra_slash_indices)
# succ
if prev_chunk_end_pos - chunk_len >= 0:
succ_vertical_indices = vertical_topk[
(vertical_topk < prev_chunk_end_pos)
& (vertical_topk >= prev_chunk_end_pos -
chunk_len)] - (prev_chunk_end_pos - chunk_len)
# TODO: support no vertical
if succ_vertical_indices.nelement() == 0:
succ_vertical_indices = torch.cat([
succ_vertical_indices,
torch.arange(
0,
k_states_succ.size(0),
max(1,
k_states_succ.size(0) / 5),
dtype=torch.int32,
device=intra_vertical_indices.device)
])
succ_slash_indices = (
(prev_chunk_end_pos + (qend - qbegin) - 1) -
slash_topk[((slash_topk >=
(prev_chunk_end_pos - chunk_len)) &
(slash_topk < (prev_chunk_end_pos +
(qend - qbegin))))])
if succ_slash_indices.nelement() == 0:
succ_slash_indices = torch.cat([
succ_slash_indices,
torch.arange(
0,
k_states_succ.size(0),
max(1,
k_states_succ.size(0) / 5),
dtype=torch.int32,
device=intra_vertical_indices.device)
])
# fill buffer
v_count = succ_vertical_indices.nelement()
s_count = succ_slash_indices.nelement()
succ_vertical_size_buffer[head_i] = v_count
succ_slash_sizes_buffer[head_i] = s_count
succ_vertical_buffer[head_i, :v_count].copy_(
succ_vertical_indices)
succ_slash_buffer[head_i, :s_count].copy_(
succ_slash_indices)
if prev_chunk_end_pos - 2 * chunk_len >= 0:
inter_vertical_indices = vertical_topk[
vertical_topk < prev_chunk_end_pos - chunk_len]
if inter_vertical_indices.nelement() == 0:
inter_vertical_indices = torch.cat([
inter_vertical_indices,
torch.arange(
0,
k_states_inter.size(0),
max(1,
k_states_inter.size(0) / 5),
dtype=torch.int32,
device=intra_vertical_indices.device)
])
inter_slash_indices = (
(prev_chunk_end_pos - chunk_len +
(qend - qbegin) - 1) -
slash_topk[slash_topk < (prev_chunk_end_pos -
chunk_len +
(qend - qbegin))])
if inter_slash_indices.nelement() == 0:
inter_slash_indices = torch.cat([
inter_slash_indices,
torch.arange(
0,
k_states_inter.size(0),
max(1,
k_states_inter.size(0) / 5),
dtype=torch.int32,
device=intra_vertical_indices.device)
])
# fill buffer
v_count = inter_vertical_indices.nelement()
s_count = inter_slash_indices.nelement()
inter_vertical_size_buffer[head_i] = v_count
inter_slash_sizes_buffer[head_i] = s_count
inter_vertical_buffer[head_i, :v_count].copy_(
inter_vertical_indices)
inter_slash_buffer[head_i, :s_count].copy_(
inter_slash_indices)
else:
intra_vertical_indices, intra_slash_indices = None, None
succ_vertical_indices, succ_slash_indices = None, None
inter_vertical_indices, inter_slash_indices = None, None
if sparse_attn_enabled:
flash_result = self._do_flash_attn(
q_states_intra,
k_states_intra,
v_states_intra,
softmax_scale=softmax_scale,
causal=True,
stage="intra",
vertical_indices=vertical_buffer,
slash_indices=slash_buffer,
vertical_indices_count=vertical_size_buffer,
slash_indices_count=slash_sizes_buffer,
mergehead_softmax_scale=softmax_scale,
sparse_attn_enabled=sparse_attn_enabled)
else:
flash_result = self._do_flash_attn(
q_states_intra,
k_states_intra,
v_states_intra,
softmax_scale=softmax_scale,
causal=True,
stage="intra",
vertical_indices=intra_vertical_indices,
slash_indices=intra_slash_indices,
sparse_attn_enabled=sparse_attn_enabled)
flash_per_chunk.append(flash_result)
if prev_chunk_end_pos - chunk_len >= 0:
if sparse_attn_enabled:
flash_result = self._do_flash_attn(
q_states_succ,
k_states_succ,
v_states_succ,
softmax_scale=softmax_scale,
causal=False,
stage="succ",
vertical_indices=succ_vertical_buffer,
slash_indices=succ_slash_buffer,
vertical_indices_count=succ_vertical_size_buffer,
slash_indices_count=succ_slash_sizes_buffer,
mergehead_softmax_scale=softmax_scale,
sparse_attn_enabled=sparse_attn_enabled)
else:
flash_result = self._do_flash_attn(
q_states_succ,
k_states_succ,
v_states_succ,
softmax_scale=softmax_scale,
causal=False,
stage="succ",
vertical_indices=succ_vertical_indices,
slash_indices=succ_slash_indices,
sparse_attn_enabled=sparse_attn_enabled)
flash_per_chunk.append(flash_result)
if prev_chunk_end_pos - chunk_len * 2 >= 0:
if sparse_attn_enabled:
flash_result = self._do_flash_attn(
q_states_inter,
k_states_inter,
v_states_inter,
softmax_scale=softmax_scale,
causal=False,
stage="inter",
vertical_indices=inter_vertical_buffer,
slash_indices=inter_slash_buffer,
vertical_indices_count=inter_vertical_size_buffer,
slash_indices_count=inter_slash_sizes_buffer,
mergehead_softmax_scale=softmax_scale,
sparse_attn_enabled=sparse_attn_enabled)
else:
flash_result = self._do_flash_attn(
q_states_inter,
k_states_inter,
v_states_inter,
softmax_scale=softmax_scale,
causal=False,
stage="inter",
vertical_indices=inter_vertical_indices,
slash_indices=inter_slash_indices,
sparse_attn_enabled=sparse_attn_enabled)
flash_per_chunk.append(flash_result)
flash_results.append(flash_per_chunk)
begin = end
attn_output = self._merge_attn_outputs(flash_results)
del flash_results
return attn_output
def _do_flash_attn(
self,
query_states: torch.Tensor,
key_states: torch.Tensor,
value_states: torch.Tensor,
softmax_scale: float,
causal: bool = True,
max_seqlen_k: Optional[int] = None,
stage: str = "intra",
vertical_indices: Optional[torch.Tensor] = None,
slash_indices: Optional[torch.Tensor] = None,
vertical_indices_count: Optional[torch.Tensor] = None,
slash_indices_count: Optional[torch.Tensor] = None,
mergehead_softmax_scale: Optional[float] = None,
sparse_attn_enabled: Optional[bool] = False,
):
if max_seqlen_k is None:
max_seqlen_k = key_states.shape[0]
q_len = query_states.shape[0]
q_heads = query_states.shape[1]
h_dim = query_states.shape[-1]
if sparse_attn_enabled:
assert slash_indices is not None
if stage == "intra":
assert causal
else:
assert not causal
query_states = query_states.unsqueeze(0).transpose(1, 2)
key_states = key_states.unsqueeze(0).transpose(1, 2)
value_states = value_states.unsqueeze(0).transpose(1, 2)
q = query_states
k = key_states
v = value_states
if (vertical_indices_count is not None and \
slash_indices_count is not None):
assert mergehead_softmax_scale is not None
res, s_lse = _vertical_slash_sparse_attention(
q,
k,
v,
vertical_indices,
slash_indices,
mergehead_softmax_scale,
causal=causal,
stage=stage,
vertical_indices_count=vertical_indices_count,
slash_indices_count=slash_indices_count)
res = res.view(q_heads, q_len,
h_dim).transpose(0, 1) # (qlen,nhead,h_dim)
s_lse = s_lse.view(
q_heads, q_len,
1).squeeze(-1).unsqueeze(0).float() # (1, nhead,qlen)
else:
res, s_lse = _vertical_slash_sparse_attention(q,
k,
v,
vertical_indices,
slash_indices,
softmax_scale,
causal=causal,
stage=stage)
res = res.view(q_len, q_heads, h_dim)
s_lse = s_lse.view(q_len, q_heads, 1).transpose(0, 2).float()
return res, s_lse
output, softmax_lse = flash_attn_varlen_func(
q=query_states,
k=key_states,
v=value_states,
softmax_scale=softmax_scale,
cu_seqlens_q=torch.tensor([0, query_states.shape[0]],
dtype=torch.int32,
device=query_states.device),
max_seqlen_q=query_states.shape[0],
cu_seqlens_k=torch.tensor([0, max_seqlen_k],
dtype=torch.int32,
device=query_states.device),
max_seqlen_k=max_seqlen_k,
causal=causal,
return_softmax_lse=True,
)
softmax_lse = softmax_lse.view(q_len, q_heads, 1).transpose(0,
2).float()
return output, softmax_lse
def _merge_attn_outputs(
self,
flash_results: List[List[Tuple[torch.Tensor, torch.Tensor]]],
return_lse: Optional[bool] = False,
) -> torch.Tensor:
attn_outputs_all = []
logits_all = []
for flash_per_chunk in flash_results:
if len(flash_per_chunk) == 1:
attn_outputs_all.append(flash_per_chunk[0][0])
if return_lse:
logits_all.append(flash_per_chunk[0][1])
continue
attn_outputs = torch.stack([
flash_attn_output[0] for flash_attn_output in flash_per_chunk
])
logits = torch.stack([
flash_attn_output[1] for flash_attn_output in flash_per_chunk
])
logits = logits.to(torch.float32)
if return_lse:
max_val = torch.max(logits, dim=0).values
diff = torch.abs(logits[0] - logits[1])
log_sum_exp = max_val + torch.log1p(torch.exp(-diff))
logits_all.append(log_sum_exp)
max_logits = torch.max(logits, dim=0).values
stable_logits = logits - max_logits.unsqueeze(0)
lse_s = torch.exp(stable_logits).detach()
lse_sum = torch.sum(lse_s, dim=0)
lse_s /= lse_sum
attn_outputs *= lse_s.unsqueeze(-1).transpose(2, 3).squeeze(1)
attn_outputs_all.append(attn_outputs.sum(dim=0))
if return_lse:
return (torch.cat(attn_outputs_all,
dim=0), torch.cat(logits_all, dim=-1))
else:
return torch.cat(attn_outputs_all, dim=0)
def _dual_chunk_flash_attn_decoding(
self,
query: torch.Tensor,
query_succ: torch.Tensor,
query_inter: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
block_table: torch.Tensor,
cache_seqlens: torch.Tensor,
softmax_scale: float,
causal: bool,
alibi_slopes: Optional[torch.Tensor],
chunk_size: int,
local_size: int,
original_max_position_embeddings: int,
decode_meta: DualChunkFlashAttentionMetadata,
):
if not causal:
raise ValueError(
"Dual Chunk Attention does not support causal=False")
block_size = value_cache.shape[1]
chunk_len = chunk_size - local_size
if chunk_len % block_size != 0:
raise ValueError("chunk_len must be divisible by block_size.")
if original_max_position_embeddings > 0:
assert decode_meta.scaling_factor is not None
scaling_factor = decode_meta.scaling_factor
query = (query * scaling_factor.view(-1, 1, 1, 1)).to(
query.dtype
) # possible for numerical issue, need to fused in the kernel
query_succ = (query_succ * scaling_factor.view(-1, 1, 1, 1)).to(
query.dtype)
query_inter = (query_inter * scaling_factor.view(-1, 1, 1, 1)).to(
query.dtype)
outputs_list = []
softmax_lses_list = []
# intra-attention
intra_output, intra_softmax_lse = (
self._dual_chunk_flash_attn_decoding_with_exp_sums(
query,
key_cache,
value_cache,
decode_meta.block_tables_intra,
decode_meta.seq_lens_intra,
softmax_scale,
alibi_slopes,
causal=False,
))
outputs_list.append(intra_output)
softmax_lses_list.append(intra_softmax_lse)
# succ-attention
if decode_meta.max_seq_len_succ:
succ_output, succ_softmax_lse = (
self._dual_chunk_flash_attn_decoding_with_exp_sums(
query_succ,
key_cache,
value_cache,
decode_meta.block_tables_succ,
decode_meta.seq_lens_succ,
softmax_scale,
alibi_slopes,
causal=False,
))
outputs_list.append(succ_output)
softmax_lses_list.append(succ_softmax_lse)
# inter-attention
if decode_meta.max_seq_len_inter:
inter_output, inter_softmax_lse = (
self._dual_chunk_flash_attn_decoding_with_exp_sums(
query_inter,
key_cache,
value_cache,
block_table[:, :decode_meta.max_seq_len_inter],
decode_meta.seq_lens_inter,
softmax_scale,
alibi_slopes,
causal=False,
))
outputs_list.append(inter_output)
softmax_lses_list.append(inter_softmax_lse)
outputs = torch.stack(outputs_list, dim=0)
del outputs_list
softmax_lses = torch.stack(softmax_lses_list, dim=0).to(torch.float32)
del softmax_lses_list
max_logits = torch.max(softmax_lses, dim=0).values
stable_logits = softmax_lses - max_logits.unsqueeze(0)
lse_s = torch.exp(stable_logits).detach()
lse_sum = torch.sum(lse_s, dim=0)
lse_s /= lse_sum
outputs *= lse_s.unsqueeze(-1).transpose(2, 3)
return outputs.sum(0)
def _dual_chunk_flash_attn_decoding_with_exp_sums(
self,
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
block_table: torch.Tensor,
cache_seqlens: torch.Tensor,
softmax_scale: float,
alibi_slopes: Optional[torch.Tensor],
causal: bool,
):
out, softmax_lse = flash_attn_with_kvcache(
q=query,
k_cache=key_cache,
v_cache=value_cache,
block_table=block_table,
cache_seqlens=cache_seqlens,
softmax_scale=softmax_scale,
alibi_slopes=alibi_slopes,
causal=causal,
return_softmax_lse=True,
)
mask = (cache_seqlens == 0)
out[mask] = 0
softmax_lse[mask] = -float("inf")
return out, softmax_lse
def _vertical_slash_sparse_attention(
query: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD]
key: torch.Tensor, # [BATCH, N_HEADS, N_KV_CTX, D_HEAD]
value: torch.Tensor, # [BATCH, N_HEADS, N_KV_CTX, D_HEAD]
v_idx: torch.Tensor, # [BATCH, N_HEADS, NNZ_V]
s_idx: torch.Tensor, # [BATCH, N_HEADS, NNZ_S]
softmax_scale: float,
causal: bool = True,
stage: str = "intra",
block_size_M: int = 64,
block_size_N: int = 64,
vertical_indices_count: torch.Tensor = None, # [N_HEADS,]
slash_indices_count: torch.Tensor = None,
):
if stage == "intra":
assert causal
else:
assert not causal
batch_size, num_heads, context_size, head_dim = query.shape
_, _, kv_seq_len, _ = key.shape
if head_dim not in [16, 32, 64, 128, 256, 512]:
target_dim = 2**math.ceil(math.log2(head_dim)) - head_dim
query = F.pad(query, [0, target_dim, 0, 0, 0, 0, 0, 0])
key = F.pad(key, [0, target_dim, 0, 0, 0, 0, 0, 0])
value = F.pad(value, [0, target_dim, 0, 0, 0, 0, 0, 0])
v_idx = v_idx.to(torch.int32).reshape(
(batch_size, num_heads, -1)).sort(dim=-1, descending=False)[0]
s_idx = s_idx.to(torch.int32).reshape(
(batch_size, num_heads, -1)).sort(dim=-1, descending=True)[0]
q_seqlens = torch.tensor([context_size],
dtype=torch.int32,
device=query.device)
kv_seqlens = torch.tensor([kv_seq_len],
dtype=torch.int32,
device=query.device)
if vertical_indices_count is not None and slash_indices_count is not None:
(
block_count,
block_offset,
column_count,
column_index,
) = ops.convert_vertical_slash_indexes_mergehead(
q_seqlens, kv_seqlens, v_idx, s_idx, vertical_indices_count,
slash_indices_count, context_size, block_size_M, block_size_N,
causal)
else:
(
block_count,
block_offset,
column_count,
column_index,
) = ops.convert_vertical_slash_indexes(q_seqlens, kv_seqlens, v_idx,
s_idx, context_size,
block_size_M, block_size_N,
causal)
q = query.transpose(1, 2).contiguous()
k = key.transpose(1, 2).contiguous()
v = value.transpose(1, 2).contiguous()
out, lse = sparse_attn_func(
q,
k,
v,
block_count,
block_offset,
column_count,
column_index,
causal=causal,
softmax_scale=softmax_scale,
return_softmax_lse=True,
)
out = out.transpose(1, 2).contiguous()
softmax_lse = lse.reshape(*lse.shape, 1)
return (out[..., :context_size, :head_dim],
softmax_lse[..., :context_size, :])
def _sum_all_diagonal_matrix(mat: torch.tensor):
h, n, m = mat.shape
# Zero matrix used for padding
zero_mat = torch.zeros((h, n, n), device=mat.device)
# pads the matrix on left and right
mat_padded = torch.cat((zero_mat, mat, zero_mat), -1)
# Change the strides
mat_strided = mat_padded.as_strided((1, n, n + m),
(n * (2 * n + m), 2 * n + m + 1, 1))
# Sums the resulting matrix's columns
sum_diags = torch.sum(mat_strided, 1)
return sum_diags[:, 1:] # drop left bottom corner
def _get_block(block_table: torch.Tensor, block_size: int, begin: int,
end: int):
begin_block = begin // block_size
end_block = (end - 1) // block_size + 1
return block_table[begin_block:end_block]