vllm/tests/entrypoints/openai/test_vision_embeds.py
Cyrus Leung 9ae2f60374
[Misc] Various cleanups for MM input processing (#29970)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-12-04 06:22:20 +00:00

71 lines
1.9 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import base64
import numpy as np
import pytest
import requests
import torch
from vllm.utils.serial_utils import tensor2base64
from ...utils import RemoteOpenAIServer
def _terratorch_dummy_messages():
pixel_values = torch.full((6, 512, 512), 1.0, dtype=torch.float16)
location_coords = torch.full((1, 2), 1.0, dtype=torch.float16)
return [
{
"role": "user",
"content": [
{
"type": "image_embeds",
"image_embeds": {
"pixel_values": tensor2base64(pixel_values),
"location_coords": tensor2base64(location_coords),
},
}
],
}
]
@pytest.mark.parametrize(
"model_name", ["ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL-Sen1Floods11"]
)
def test_single_request(model_name: str):
args = [
"--runner",
"pooling",
# use half precision for speed and memory savings in CI environment
"--dtype",
"float16",
"--enforce-eager",
"--trust-remote-code",
"--max-num-seqs",
"32",
"--model-impl",
"terratorch",
"--skip-tokenizer-init",
"--enable-mm-embeds",
]
with RemoteOpenAIServer(model_name, args) as server:
response = requests.post(
server.url_for("pooling"),
json={
"model": model_name,
"messages": _terratorch_dummy_messages(),
"encoding_format": "base64",
},
)
response.raise_for_status()
output = response.json()["data"][0]["data"]
np_response = np.frombuffer(base64.b64decode(output), dtype=np.float32)
assert len(np_response) == 524288