vllm/tests/multimodal/test_video.py
Canlin Guo fe25772aa9
[Bugfix] Handle broken frames in video loading (#29001)
Signed-off-by: gcanlin <canlinguosdu@gmail.com>
Signed-off-by: 凌葭 <lvjiang.lj@alibaba-inc.com>
Co-authored-by: 凌葭 <lvjiang.lj@alibaba-inc.com>
2025-11-20 04:38:12 +00:00

180 lines
6.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import tempfile
from pathlib import Path
import numpy as np
import numpy.typing as npt
import pytest
from PIL import Image
from vllm.assets.base import get_vllm_public_assets
from vllm.assets.video import video_to_ndarrays, video_to_pil_images_list
from vllm.multimodal.image import ImageMediaIO
from vllm.multimodal.video import VIDEO_LOADER_REGISTRY, VideoLoader, VideoMediaIO
from .utils import cosine_similarity, create_video_from_image, normalize_image
pytestmark = pytest.mark.cpu_test
ASSETS_DIR = Path(__file__).parent / "assets"
NUM_FRAMES = 10
FAKE_OUTPUT_1 = np.random.rand(NUM_FRAMES, 1280, 720, 3)
FAKE_OUTPUT_2 = np.random.rand(NUM_FRAMES, 1280, 720, 3)
@VIDEO_LOADER_REGISTRY.register("test_video_loader_1")
class TestVideoLoader1(VideoLoader):
@classmethod
def load_bytes(cls, data: bytes, num_frames: int = -1) -> npt.NDArray:
return FAKE_OUTPUT_1
@VIDEO_LOADER_REGISTRY.register("test_video_loader_2")
class TestVideoLoader2(VideoLoader):
@classmethod
def load_bytes(cls, data: bytes, num_frames: int = -1) -> npt.NDArray:
return FAKE_OUTPUT_2
def test_video_loader_registry():
custom_loader_1 = VIDEO_LOADER_REGISTRY.load("test_video_loader_1")
output_1 = custom_loader_1.load_bytes(b"test")
np.testing.assert_array_equal(output_1, FAKE_OUTPUT_1)
custom_loader_2 = VIDEO_LOADER_REGISTRY.load("test_video_loader_2")
output_2 = custom_loader_2.load_bytes(b"test")
np.testing.assert_array_equal(output_2, FAKE_OUTPUT_2)
def test_video_loader_type_doesnt_exist():
with pytest.raises(AssertionError):
VIDEO_LOADER_REGISTRY.load("non_existing_video_loader")
@VIDEO_LOADER_REGISTRY.register("assert_10_frames_1_fps")
class Assert10Frames1FPSVideoLoader(VideoLoader):
@classmethod
def load_bytes(
cls, data: bytes, num_frames: int = -1, fps: float = -1.0, **kwargs
) -> npt.NDArray:
assert num_frames == 10, "bad num_frames"
assert fps == 1.0, "bad fps"
return FAKE_OUTPUT_2
def test_video_media_io_kwargs(monkeypatch: pytest.MonkeyPatch):
with monkeypatch.context() as m:
m.setenv("VLLM_VIDEO_LOADER_BACKEND", "assert_10_frames_1_fps")
imageio = ImageMediaIO()
# Verify that different args pass/fail assertions as expected.
videoio = VideoMediaIO(imageio, **{"num_frames": 10, "fps": 1.0})
_ = videoio.load_bytes(b"test")
videoio = VideoMediaIO(
imageio, **{"num_frames": 10, "fps": 1.0, "not_used": "not_used"}
)
_ = videoio.load_bytes(b"test")
with pytest.raises(AssertionError, match="bad num_frames"):
videoio = VideoMediaIO(imageio, **{})
_ = videoio.load_bytes(b"test")
with pytest.raises(AssertionError, match="bad num_frames"):
videoio = VideoMediaIO(imageio, **{"num_frames": 9, "fps": 1.0})
_ = videoio.load_bytes(b"test")
with pytest.raises(AssertionError, match="bad fps"):
videoio = VideoMediaIO(imageio, **{"num_frames": 10, "fps": 2.0})
_ = videoio.load_bytes(b"test")
@pytest.mark.parametrize("is_color", [True, False])
@pytest.mark.parametrize("fourcc, ext", [("mp4v", "mp4"), ("XVID", "avi")])
def test_opencv_video_io_colorspace(is_color: bool, fourcc: str, ext: str):
"""
Test all functions that use OpenCV for video I/O return RGB format.
Both RGB and grayscale videos are tested.
"""
image_path = get_vllm_public_assets(
filename="stop_sign.jpg", s3_prefix="vision_model_images"
)
image = Image.open(image_path)
with tempfile.TemporaryDirectory() as tmpdir:
if not is_color:
image_path = f"{tmpdir}/test_grayscale_image.png"
image = image.convert("L")
image.save(image_path)
# Convert to gray RGB for comparison
image = image.convert("RGB")
video_path = f"{tmpdir}/test_RGB_video.{ext}"
create_video_from_image(
image_path,
video_path,
num_frames=2,
is_color=is_color,
fourcc=fourcc,
)
frames = video_to_ndarrays(video_path)
for frame in frames:
sim = cosine_similarity(
normalize_image(np.array(frame)), normalize_image(np.array(image))
)
assert np.sum(np.isnan(sim)) / sim.size < 0.001
assert np.nanmean(sim) > 0.99
pil_frames = video_to_pil_images_list(video_path)
for frame in pil_frames:
sim = cosine_similarity(
normalize_image(np.array(frame)), normalize_image(np.array(image))
)
assert np.sum(np.isnan(sim)) / sim.size < 0.001
assert np.nanmean(sim) > 0.99
io_frames, _ = VideoMediaIO(ImageMediaIO()).load_file(Path(video_path))
for frame in io_frames:
sim = cosine_similarity(
normalize_image(np.array(frame)), normalize_image(np.array(image))
)
assert np.sum(np.isnan(sim)) / sim.size < 0.001
assert np.nanmean(sim) > 0.99
def test_video_backend_handles_broken_frames(monkeypatch: pytest.MonkeyPatch):
"""
Regression test for handling videos with broken frames.
This test uses a pre-corrupted video file (assets/corrupted.mp4) that
contains broken/unreadable frames to verify the video loader handles
them gracefully without crashing and returns accurate metadata.
"""
with monkeypatch.context() as m:
m.setenv("VLLM_VIDEO_LOADER_BACKEND", "opencv")
# Load the pre-corrupted video file that contains broken frames
corrupted_video_path = ASSETS_DIR / "corrupted.mp4"
with open(corrupted_video_path, "rb") as f:
video_data = f.read()
loader = VIDEO_LOADER_REGISTRY.load("opencv")
frames, metadata = loader.load_bytes(video_data, num_frames=-1)
# Verify metadata consistency:
# frames_indices must match actual loaded frames
assert frames.shape[0] == len(metadata["frames_indices"]), (
f"Frames array size must equal frames_indices length. "
f"Got {frames.shape[0]} frames but "
f"{len(metadata['frames_indices'])} indices"
)
# Verify that broken frames were skipped:
# loaded frames should be less than total
assert frames.shape[0] < metadata["total_num_frames"], (
f"Should load fewer frames than total due to broken frames. "
f"Expected fewer than {metadata['total_num_frames']} frames, "
f"but loaded {frames.shape[0]} frames"
)