mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-14 05:04:58 +08:00
200 lines
7.8 KiB
Python
200 lines
7.8 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import os
|
|
from typing import TYPE_CHECKING, Optional
|
|
|
|
import torch
|
|
|
|
import vllm.envs as envs
|
|
from vllm.logger import init_logger
|
|
from vllm.utils import DEFAULT_MAX_NUM_BATCHED_TOKENS
|
|
|
|
from .interface import DeviceCapability, Platform, PlatformEnum, _Backend
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.config import ModelConfig, VllmConfig
|
|
else:
|
|
ModelConfig = None
|
|
VllmConfig = None
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class XPUPlatform(Platform):
|
|
_enum = PlatformEnum.XPU
|
|
device_name: str = "xpu"
|
|
device_type: str = "xpu"
|
|
dispatch_key: str = "XPU"
|
|
# Intel XPU's device key is "GPU" for Ray.
|
|
# see https://github.com/ray-project/ray/blob/6a5eb5865eeb9ccf058a79b44f107e327e360673/python/ray/_private/accelerators/intel_gpu.py#L20 # noqa: E501
|
|
ray_device_key: str = "GPU"
|
|
dist_backend: str = "ccl" # ccl | xccl
|
|
device_control_env_var: str = "ZE_AFFINITY_MASK"
|
|
|
|
@classmethod
|
|
def get_attn_backend_cls(cls, selected_backend: _Backend, head_size: int,
|
|
dtype: torch.dtype, kv_cache_dtype: Optional[str],
|
|
block_size: int, use_v1: bool, use_mla: bool,
|
|
has_sink: bool) -> str:
|
|
if selected_backend is not None and selected_backend != _Backend.IPEX:
|
|
logger.info("Cannot use %s backend on XPU.", selected_backend)
|
|
use_v1 = envs.VLLM_USE_V1
|
|
if not use_v1:
|
|
raise ValueError("XPU backend only supports V1.")
|
|
logger.info("Using Flash Attention backend on V1 engine.")
|
|
return "vllm.v1.attention.backends.flash_attn.FlashAttentionBackend"
|
|
|
|
@classmethod
|
|
def set_device(cls, device: torch.device) -> None:
|
|
"""
|
|
Set the device for the current platform.
|
|
"""
|
|
torch.xpu.set_device(device)
|
|
|
|
@classmethod
|
|
def get_device_capability(
|
|
cls,
|
|
device_id: int = 0,
|
|
) -> Optional[DeviceCapability]:
|
|
# capacity format differs from cuda's and will cause unexpected
|
|
# failure, so use None directly
|
|
return None
|
|
|
|
@classmethod
|
|
def get_device_name(cls, device_id: int = 0) -> str:
|
|
return torch.xpu.get_device_name(device_id)
|
|
|
|
@classmethod
|
|
def get_punica_wrapper(cls) -> str:
|
|
return "vllm.lora.punica_wrapper.punica_xpu.PunicaWrapperXPU"
|
|
|
|
@classmethod
|
|
def get_device_total_memory(cls, device_id: int = 0) -> int:
|
|
device_props = torch.xpu.get_device_properties(device_id)
|
|
return device_props.total_memory
|
|
|
|
@classmethod
|
|
def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
|
|
return True
|
|
|
|
@classmethod
|
|
def inference_mode(cls):
|
|
return torch.no_grad()
|
|
|
|
@classmethod
|
|
def check_and_update_config(cls, vllm_config: VllmConfig) -> None:
|
|
cache_config = vllm_config.cache_config
|
|
model_config = vllm_config.model_config
|
|
# in V1(or with ipex chunked prefill) block_size is 64
|
|
if cache_config and cache_config.block_size is None:
|
|
cache_config.block_size = 64
|
|
|
|
# FIXME: Temporarily forcing eager mode
|
|
# remove after t.compile support stabilizes.
|
|
if (envs.VLLM_USE_V1 and model_config is not None
|
|
and not vllm_config.model_config.enforce_eager):
|
|
from vllm.config import CompilationLevel
|
|
vllm_config.compilation_config.level = CompilationLevel.NO_COMPILATION # noqa: E501
|
|
|
|
# Instances created using VllmConfig() typically have model_config as
|
|
# None by default. The modification involves adding a check to prevent
|
|
# potential null exceptions check and update model config.
|
|
if model_config is not None and model_config.dtype == torch.bfloat16 \
|
|
and not cls.device_support_bf16():
|
|
model_config.dtype = torch.float16
|
|
|
|
# lazy import to avoid circular import
|
|
from vllm.config import CUDAGraphMode
|
|
compilation_config = vllm_config.compilation_config
|
|
if compilation_config.cudagraph_mode is None or \
|
|
compilation_config.cudagraph_mode.max_cudagraph_mode() \
|
|
!= CUDAGraphMode.NONE:
|
|
logger.info("[XPU] CUDA graph is not supported on XPU, "
|
|
"disabling cudagraphs.")
|
|
compilation_config.cudagraph_mode = CUDAGraphMode.NONE
|
|
|
|
# check and update parallel config
|
|
parallel_config = vllm_config.parallel_config
|
|
parallel_config.worker_cls = "vllm.v1.worker.xpu_worker.XPUWorker"
|
|
|
|
if parallel_config.distributed_executor_backend is None:
|
|
if parallel_config.world_size > 1:
|
|
parallel_config.distributed_executor_backend = "ray"
|
|
else:
|
|
parallel_config.distributed_executor_backend = "uni"
|
|
elif parallel_config.distributed_executor_backend == "mp":
|
|
# FIXME(kunshang):
|
|
# spawn needs calling `if __name__ == '__main__':``
|
|
# fork is not supported for xpu start new process.
|
|
if envs.VLLM_WORKER_MULTIPROC_METHOD != "spawn":
|
|
os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"
|
|
logger.warning(
|
|
"Please use spawn as start method if you want to use mp.")
|
|
elif (parallel_config.distributed_executor_backend != "ray"
|
|
and parallel_config.distributed_executor_backend != "uni"
|
|
and parallel_config.distributed_executor_backend
|
|
!= "external_launcher"):
|
|
logger.warning(
|
|
"%s is not supported on XPU, fallback to ray distributed"
|
|
" executor backend.",
|
|
parallel_config.distributed_executor_backend)
|
|
parallel_config.distributed_executor_backend = "ray"
|
|
|
|
if model_config and model_config.use_mla:
|
|
logger.info(
|
|
"MLA is enabled on a non-GPU platform; forcing chunked "
|
|
"prefill and prefix caching to be disabled.")
|
|
vllm_config.scheduler_config.enable_chunked_prefill = False
|
|
vllm_config.scheduler_config.chunked_prefill_enabled = False
|
|
vllm_config.scheduler_config.max_num_batched_tokens = max(
|
|
vllm_config.scheduler_config.max_model_len,
|
|
DEFAULT_MAX_NUM_BATCHED_TOKENS)
|
|
|
|
@classmethod
|
|
def is_pin_memory_available(cls):
|
|
return True
|
|
|
|
@classmethod
|
|
def get_current_memory_usage(cls,
|
|
device: Optional[torch.types.Device] = None
|
|
) -> float:
|
|
torch.xpu.reset_peak_memory_stats(device)
|
|
return torch.xpu.max_memory_allocated(device)
|
|
|
|
@classmethod
|
|
def device_support_bf16(cls) -> bool:
|
|
device_name = cls.get_device_name().lower()
|
|
if cls.is_client_gpu_a770():
|
|
logger.warning("Intel Arc A770 have bfloat16 accuracy known issue,"
|
|
" fallback to float16")
|
|
return False
|
|
else:
|
|
logger.info(
|
|
"Device name %s supports bfloat16. Please file an issue "
|
|
"if you encounter any accuracy problems with bfloat16.",
|
|
device_name)
|
|
return True
|
|
|
|
@classmethod
|
|
def is_data_center_gpu(cls) -> bool:
|
|
device_name = cls.get_device_name().lower()
|
|
return device_name.count("data center gpu") > 0
|
|
|
|
@classmethod
|
|
def is_client_gpu_a770(cls) -> bool:
|
|
device_name = cls.get_device_name().lower()
|
|
return device_name.count("a770") > 0
|
|
|
|
@classmethod
|
|
def get_device_communicator_cls(cls) -> str:
|
|
return "vllm.distributed.device_communicators.xpu_communicator.XpuCommunicator" # noqa
|
|
|
|
@classmethod
|
|
def supports_v1(cls, model_config: ModelConfig) -> bool:
|
|
return True
|
|
|
|
@classmethod
|
|
def device_count(cls) -> int:
|
|
return torch.xpu.device_count()
|