mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 02:05:01 +08:00
Signed-off-by: gnovack <gnovack@amazon.com> Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
146 lines
5.0 KiB
Python
146 lines
5.0 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
|
|
import vllm
|
|
from vllm.lora.request import LoRARequest
|
|
|
|
from ..utils import multi_gpu_test
|
|
|
|
MODEL_PATH = "allenai/OLMoE-1B-7B-0125-Instruct"
|
|
|
|
PROMPT_TEMPLATE = """I want you to act as a SQL terminal in front of an example database, you need only to return the sql command to me.Below is an instruction that describes a task, Write a response that appropriately completes the request.
|
|
"
|
|
##Instruction:
|
|
candidate_poll contains tables such as candidate, people. Table candidate has columns such as Candidate_ID, People_ID, Poll_Source, Date, Support_rate, Consider_rate, Oppose_rate, Unsure_rate. Candidate_ID is the primary key.
|
|
Table people has columns such as People_ID, Sex, Name, Date_of_Birth, Height, Weight. People_ID is the primary key.
|
|
The People_ID of candidate is the foreign key of People_ID of people.
|
|
|
|
|
|
###Input:
|
|
{context}
|
|
|
|
###Response:""" # noqa: E501
|
|
|
|
EXPECTED_LORA_OUTPUT = [
|
|
"SELECT count(*) FROM candidate",
|
|
"SELECT count(*) FROM candidate",
|
|
"SELECT poll_source FROM candidate GROUP BY poll_source ORDER BY count(*) DESC LIMIT 1", # noqa: E501
|
|
"SELECT poll_source FROM candidate GROUP BY poll_source ORDER BY count(*) DESC LIMIT 1", # noqa: E501
|
|
]
|
|
|
|
EXPECTED_BASE_MODEL_OUTPUT = [
|
|
"SELECT COUNT(Candidate_ID) FROM candidate",
|
|
"SELECT COUNT(Candidate_ID) FROM candidate",
|
|
"SELECT Candidate_ID, COUNT(*) as Total_Candidates\nFROM candidate\nINNER JOIN people ON candidate.People_ID = people.People_ID", # noqa: E501
|
|
"SELECT Candidate_ID, Poll_Source FROM candidate WHERE People_ID IN (SELECT People_ID FROM people) ORDER BY COUNT(*) DESC LIMIT 1", # noqa: E501
|
|
]
|
|
|
|
|
|
def generate_and_test(
|
|
llm: vllm.LLM, lora_path: str, lora_id: list[int | None] | int | None
|
|
) -> None:
|
|
prompts = [
|
|
PROMPT_TEMPLATE.format(context="How many candidates are there?"),
|
|
PROMPT_TEMPLATE.format(context="Count the number of candidates."),
|
|
PROMPT_TEMPLATE.format(
|
|
context="Which poll resource provided the most number of candidate information?" # noqa: E501
|
|
),
|
|
PROMPT_TEMPLATE.format(
|
|
context="Return the poll resource associated with the most candidates."
|
|
),
|
|
]
|
|
|
|
lora_request = None
|
|
if isinstance(lora_id, int):
|
|
lora_request = LoRARequest(str(lora_id), lora_id, lora_path)
|
|
elif isinstance(lora_id, list):
|
|
lora_request = [
|
|
LoRARequest(str(i), i, lora_path) if i is not None else None
|
|
for i in lora_id
|
|
]
|
|
|
|
sampling_params = vllm.SamplingParams(temperature=0, max_tokens=64)
|
|
outputs = llm.generate(prompts, sampling_params, lora_request=lora_request)
|
|
# Print the outputs.
|
|
generated_texts: list[str] = []
|
|
for output in outputs:
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text.strip()
|
|
generated_texts.append(generated_text)
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
|
|
for i in range(len(EXPECTED_LORA_OUTPUT)):
|
|
req_lora_id = lora_id[i] if isinstance(lora_id, list) else lora_id
|
|
expected_output = (
|
|
EXPECTED_LORA_OUTPUT[i]
|
|
if req_lora_id is not None
|
|
else EXPECTED_BASE_MODEL_OUTPUT[i]
|
|
)
|
|
assert generated_texts[i].startswith(expected_output)
|
|
|
|
|
|
def test_olmoe_lora(olmoe_lora_files):
|
|
# We enable enforce_eager=True here to reduce VRAM usage for lora-test CI,
|
|
# Otherwise, the lora-test will fail due to CUDA OOM.
|
|
llm = vllm.LLM(
|
|
MODEL_PATH,
|
|
max_model_len=1024,
|
|
enable_lora=True,
|
|
max_loras=4,
|
|
enforce_eager=True,
|
|
trust_remote_code=True,
|
|
enable_chunked_prefill=True,
|
|
)
|
|
|
|
generate_and_test(llm, olmoe_lora_files, lora_id=1)
|
|
generate_and_test(llm, olmoe_lora_files, lora_id=2)
|
|
|
|
|
|
def test_olmoe_lora_mixed(olmoe_lora_files):
|
|
llm = vllm.LLM(
|
|
MODEL_PATH,
|
|
max_model_len=1024,
|
|
enable_lora=True,
|
|
max_loras=4,
|
|
enforce_eager=True,
|
|
trust_remote_code=True,
|
|
enable_chunked_prefill=True,
|
|
)
|
|
|
|
generate_and_test(llm, olmoe_lora_files, lora_id=[1, None, 3, None])
|
|
|
|
|
|
@multi_gpu_test(num_gpus=2)
|
|
def test_olmoe_lora_tp2(olmoe_lora_files):
|
|
llm = vllm.LLM(
|
|
MODEL_PATH,
|
|
max_model_len=1024,
|
|
enable_lora=True,
|
|
max_loras=4,
|
|
enforce_eager=True,
|
|
trust_remote_code=True,
|
|
enable_chunked_prefill=True,
|
|
tensor_parallel_size=2,
|
|
)
|
|
|
|
generate_and_test(llm, olmoe_lora_files, lora_id=1)
|
|
generate_and_test(llm, olmoe_lora_files, lora_id=2)
|
|
|
|
|
|
@multi_gpu_test(num_gpus=4)
|
|
def test_olmoe_lora_tp4(olmoe_lora_files):
|
|
llm = vllm.LLM(
|
|
MODEL_PATH,
|
|
max_model_len=1024,
|
|
enable_lora=True,
|
|
max_loras=4,
|
|
enforce_eager=True,
|
|
trust_remote_code=True,
|
|
enable_chunked_prefill=True,
|
|
tensor_parallel_size=4,
|
|
)
|
|
|
|
generate_and_test(llm, olmoe_lora_files, lora_id=1)
|
|
generate_and_test(llm, olmoe_lora_files, lora_id=2)
|