vllm/vllm/model_executor/layers/activation.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

361 lines
12 KiB
Python

# SPDX-License-Identifier: Apache-2.0
"""Custom activation functions."""
import math
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from vllm.distributed import (divide, get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size)
from vllm.model_executor.custom_op import CustomOp
from vllm.model_executor.utils import set_weight_attrs
from vllm.platforms import current_platform
from vllm.utils import LazyDict
@CustomOp.register("fatrelu_and_mul")
class FatreluAndMul(CustomOp):
"""An activation function for FATReLU.
The function computes x -> FATReLU(x[:d]) * x[d:] where
d = x.shape[-1] // 2.
This is used in openbmb/MiniCPM-S-1B-sft.
Shapes:
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
return: (num_tokens, d) or (batch_size, seq_len, d)
"""
def __init__(self, threshold: float = 0.):
super().__init__()
self.threshold = threshold
if current_platform.is_cuda_alike():
self.op = torch.ops._C.fatrelu_and_mul
elif current_platform.is_cpu():
self._forward_method = self.forward_native
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
d = x.shape[-1] // 2
x1 = x[..., :d]
x2 = x[..., d:]
x1 = F.threshold(x1, self.threshold, 0.0)
return x1 * x2
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
d = x.shape[-1] // 2
output_shape = (x.shape[:-1] + (d, ))
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
self.op(out, x, self.threshold)
return out
@CustomOp.register("silu_and_mul")
class SiluAndMul(CustomOp):
"""An activation function for SwiGLU.
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
Shapes:
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
return: (num_tokens, d) or (batch_size, seq_len, d)
"""
def __init__(self):
super().__init__()
if current_platform.is_cuda_alike() or current_platform.is_cpu():
self.op = torch.ops._C.silu_and_mul
elif current_platform.is_xpu():
from vllm._ipex_ops import ipex_ops
self.op = ipex_ops.silu_and_mul
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
"""PyTorch-native implementation equivalent to forward()."""
d = x.shape[-1] // 2
return F.silu(x[..., :d]) * x[..., d:]
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
d = x.shape[-1] // 2
output_shape = (x.shape[:-1] + (d, ))
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
self.op(out, x)
return out
def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
d = x.shape[-1] // 2
output_shape = (x.shape[:-1] + (d, ))
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
self.op(out, x)
return out
@CustomOp.register("mul_and_silu")
class MulAndSilu(CustomOp):
"""An activation function for SwiGLU.
The function computes x -> x[:d] * silu(x[d:]) where d = x.shape[-1] // 2.
Shapes:
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
return: (num_tokens, d) or (batch_size, seq_len, d)
"""
def __init__(self):
super().__init__()
if current_platform.is_cuda_alike():
self.op = torch.ops._C.mul_and_silu
elif current_platform.is_xpu():
from vllm._ipex_ops import ipex_ops
self.op = ipex_ops.silu_and_mul
elif current_platform.is_cpu():
self._forward_method = self.forward_native
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
"""PyTorch-native implementation equivalent to forward()."""
d = x.shape[-1] // 2
return x[..., :d] * F.silu(x[..., d:])
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
d = x.shape[-1] // 2
output_shape = (x.shape[:-1] + (d, ))
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
self.op(out, x)
return out
# TODO implement forward_xpu for MulAndSilu
# def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
@CustomOp.register("gelu_and_mul")
class GeluAndMul(CustomOp):
"""An activation function for GeGLU.
The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
Shapes:
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
return: (batch_size, seq_len, d) or (num_tokens, d)
"""
def __init__(self, approximate: str = "none"):
super().__init__()
self.approximate = approximate
if approximate not in ("none", "tanh"):
raise ValueError(f"Unknown approximate mode: {approximate}")
if current_platform.is_cuda_alike() or current_platform.is_cpu():
if approximate == "none":
self.op = torch.ops._C.gelu_and_mul
elif approximate == "tanh":
self.op = torch.ops._C.gelu_tanh_and_mul
elif current_platform.is_xpu():
from vllm._ipex_ops import ipex_ops
if approximate == "none":
self.op = ipex_ops.gelu_and_mul
else:
self.op = ipex_ops.gelu_tanh_and_mul
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
"""PyTorch-native implementation equivalent to forward()."""
d = x.shape[-1] // 2
return F.gelu(x[..., :d], approximate=self.approximate) * x[..., d:]
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
d = x.shape[-1] // 2
output_shape = (x.shape[:-1] + (d, ))
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
self.op(out, x)
return out
def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
d = x.shape[-1] // 2
output_shape = (x.shape[:-1] + (d, ))
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
self.op(out, x)
return out
def extra_repr(self) -> str:
return f'approximate={repr(self.approximate)}'
@CustomOp.register("gelu_new")
class NewGELU(CustomOp):
def __init__(self):
super().__init__()
if current_platform.is_cuda_alike() or current_platform.is_cpu():
self.op = torch.ops._C.gelu_new
elif current_platform.is_xpu():
from vllm._ipex_ops import ipex_ops
self.op = ipex_ops.gelu_new
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
"""PyTorch-native implementation equivalent to forward()."""
c = math.sqrt(2.0 / math.pi)
return 0.5 * x * (1.0 + torch.tanh(c *
(x + 0.044715 * torch.pow(x, 3.0))))
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
out = torch.empty_like(x)
self.op(out, x)
return out
def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
return self.op(x)
@CustomOp.register("gelu_fast")
class FastGELU(CustomOp):
def __init__(self):
super().__init__()
if current_platform.is_cuda_alike() or current_platform.is_cpu():
self.op = torch.ops._C.gelu_fast
elif current_platform.is_xpu():
from vllm._ipex_ops import ipex_ops
self.op = ipex_ops.gelu_fast
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
"""PyTorch-native implementation equivalent to forward()."""
return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 *
(1.0 + 0.044715 * x * x)))
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
out = torch.empty_like(x)
self.op(out, x)
return out
def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
return self.op(x)
@CustomOp.register("quick_gelu")
class QuickGELU(CustomOp):
# https://github.com/huggingface/transformers/blob/main/src/transformers/activations.py#L90
def __init__(self):
super().__init__()
if current_platform.is_cuda_alike() or current_platform.is_cpu():
self.op = torch.ops._C.gelu_quick
elif current_platform.is_xpu():
from vllm._ipex_ops import ipex_ops
self.op = ipex_ops.gelu_quick
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
"""PyTorch-native implementation equivalent to forward()."""
return x * torch.sigmoid(1.702 * x)
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
out = torch.empty_like(x)
self.op(out, x)
return out
def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
out = torch.empty_like(x)
self.op(out, x)
return out
# TODO implement forward_xpu for QuickGELU
# def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
@CustomOp.register("relu2")
class ReLUSquaredActivation(CustomOp):
"""
Applies the relu^2 activation introduced in https://arxiv.org/abs/2109.08668v2
"""
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
"""PyTorch-native implementation equivalent to forward()."""
return torch.square(F.relu(x))
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
return self.forward_native(x)
class ScaledActivation(nn.Module):
"""An activation function with post-scale parameters.
This is used for some quantization methods like AWQ.
"""
def __init__(
self,
act_module: nn.Module,
intermediate_size: int,
input_is_parallel: bool = True,
params_dtype: Optional[torch.dtype] = None,
):
super().__init__()
self.act = act_module
self.input_is_parallel = input_is_parallel
if input_is_parallel:
tp_size = get_tensor_model_parallel_world_size()
intermediate_size_per_partition = divide(intermediate_size,
tp_size)
else:
intermediate_size_per_partition = intermediate_size
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.scales = nn.Parameter(
torch.empty(intermediate_size_per_partition, dtype=params_dtype))
set_weight_attrs(self.scales, {"weight_loader": self.weight_loader})
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.act(x) / self.scales
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor):
param_data = param.data
if self.input_is_parallel:
tp_rank = get_tensor_model_parallel_rank()
shard_size = param_data.shape[0]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(0, start_idx, shard_size)
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
_ACTIVATION_REGISTRY = LazyDict({
"gelu":
lambda: nn.GELU(),
"gelu_fast":
lambda: FastGELU(),
"gelu_new":
lambda: NewGELU(),
"gelu_pytorch_tanh":
lambda: nn.GELU(approximate="tanh"),
"relu":
lambda: nn.ReLU(),
"relu2":
lambda: ReLUSquaredActivation(),
"silu":
lambda: nn.SiLU(),
"quick_gelu":
lambda: QuickGELU(),
})
def get_act_fn(act_fn_name: str) -> nn.Module:
"""Get an activation function by name."""
act_fn_name = act_fn_name.lower()
if act_fn_name not in _ACTIVATION_REGISTRY:
raise ValueError(
f"Activation function {act_fn_name!r} is not supported.")
return _ACTIVATION_REGISTRY[act_fn_name]
_ACTIVATION_AND_MUL_REGISTRY = LazyDict({
"gelu": lambda: GeluAndMul(),
"silu": lambda: SiluAndMul(),
})
def get_act_and_mul_fn(act_fn_name: str) -> nn.Module:
"""Get an activation-and-mul (i.e. SiluAndMul) function by name."""
act_fn_name = act_fn_name.lower()
if act_fn_name not in _ACTIVATION_AND_MUL_REGISTRY:
raise ValueError(
f"Activation function {act_fn_name!r} is not supported.")
return _ACTIVATION_AND_MUL_REGISTRY[act_fn_name]