Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

270 lines
10 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# https://huggingface.co/Qwen/Qwen-7B/blob/main/modeling_qwen.py
# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
#
# Copyright 2023 The Qwen team.
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Shared resampler perceiver network used in multimodal models and
related helpers for sincos positional embeddings.
Example models: Qwen (Qwen-VL), MiniCPM-V 2.0
"""
import math
from functools import partial
from typing import Callable, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from vllm.model_executor.layers.linear import ReplicatedLinear
from vllm.model_executor.layers.quantization import QuantizationConfig
DEFAULT_LN = partial(nn.LayerNorm, eps=1e-6)
def get_abs_pos(abs_pos: torch.Tensor, tgt_size: Union[torch.Tensor,
int]) -> torch.Tensor:
# abs_pos: L, C
# tgt_size: (H, W)
# return: M, C
src_size = int(math.sqrt(abs_pos.size(0)))
dtype = abs_pos.dtype
if isinstance(tgt_size, int):
tgt_size = (tgt_size, tgt_size)
if (src_size == tgt_size[0] and src_size == tgt_size[1]):
return abs_pos
return (F.interpolate(
abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
size=(tgt_size[0], tgt_size[1]),
mode="bicubic",
align_corners=False,
).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype))
# sin/cos positional embedding helpers are adapted from:
# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
def get_1d_sincos_pos_embed_from_grid(
embed_dim: int, pos: np.ndarray,
version: Tuple[int, int] = (2, 0)) -> torch.Tensor:
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,) / (H, W)
out: (M, D) / (H, W, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float32)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
if version == (2, 0):
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
else:
out = np.einsum("hw,d->hwd", pos, omega) # (H, W, D/2), outer product
emb_sin = np.sin(out) # (H, W, D/2)
emb_cos = np.cos(out) # (H, W, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D)
return emb
def get_2d_sincos_pos_embed_from_grid(
embed_dim: int, grid: np.ndarray,
version: Tuple[int, int] = (2, 0)) -> torch.Tensor:
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(
embed_dim // 2, grid[0], version) # (H*W, D/2) or (H, W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(
embed_dim // 2, grid[1], version) # (H*W, D/2) or (H, W, D/2)
if version == (2, 0):
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
else:
emb = np.concatenate([emb_h, emb_w], axis=-1) # (H, W, D)
return emb
def get_2d_sincos_pos_embed(
embed_dim: int,
grid_size: Union[int, Tuple[int, int]],
cls_token: bool = False,
version: Tuple[int, int] = (2, 0),
) -> torch.Tensor:
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or
[1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
if isinstance(grid_size, int):
grid_h_size, grid_w_size = grid_size, grid_size
else:
grid_h_size, grid_w_size = grid_size[0], grid_size[1]
grid_h = np.arange(grid_h_size, dtype=np.float32)
grid_w = np.arange(grid_w_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
assert isinstance(grid, np.ndarray) and \
grid.shape == (2, grid_h_size, grid_w_size)
if version == (2, 0):
grid = grid.reshape([2, 1, grid_h_size, grid_w_size])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid, version)
if cls_token:
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed],
axis=0)
else:
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid, version)
return pos_embed
class BaseResampler(nn.Module):
"""
A 2D perceiver-resampler network with one cross attention layers by
(grid_size**2) learnable queries and 2d sincos pos_emb.
Outputs:
A tensor with the shape of (grid_size**2, embed_dim)
"""
def __init__(self,
num_queries: int,
embed_dim: int,
num_heads: int,
kv_dim: Optional[int] = None,
norm_layer: Callable[[int], nn.LayerNorm] = DEFAULT_LN,
do_post_projection: bool = True,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "") -> None:
super().__init__()
self.num_queries = num_queries
self.embed_dim = embed_dim
self.num_heads = num_heads
self.query = nn.Parameter(torch.empty(self.num_queries, embed_dim))
if kv_dim is not None and kv_dim != embed_dim:
self.kv_proj = ReplicatedLinear(kv_dim,
embed_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.kv_proj")
else:
# Maintain the same return value with ReplicatedLinear.forward
self.kv_proj = lambda *args, **kwargs: ( # type: ignore # noqa
nn.Identity()(*args, **kwargs),
None,
)
self.attn = nn.MultiheadAttention(embed_dim, num_heads)
self.ln_q = norm_layer(embed_dim)
self.ln_kv = norm_layer(embed_dim)
self.do_post_projection = do_post_projection
self.ln_post = norm_layer(embed_dim) if do_post_projection else None
self.proj = nn.Parameter(
(embed_dim**-0.5) *
torch.empty(embed_dim, embed_dim)) if do_post_projection else None
def _repeat(self, query, N: int):
return query.unsqueeze(1).repeat(1, N, 1)
class Resampler2(BaseResampler):
"""Resampler-perceiver network to be used for a variety of model types,
e.g., Qwen-vl / Minicpmv 2.0. The main difference is the addition of the
do_post_projection arg, which indicates whether or not there should be
a post layer normalization and projector after the attention. This is
present in minicpmv2.0, but not qwen-vl.
"""
def __init__(self,
grid_size: int,
embed_dim: int,
num_heads: int,
kv_dim: Optional[int] = None,
norm_layer: Callable[[int], nn.LayerNorm] = DEFAULT_LN,
adaptive: bool = False,
do_post_projection: bool = True,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "") -> None:
super().__init__(grid_size**2,
embed_dim,
num_heads,
kv_dim,
norm_layer,
do_post_projection=do_post_projection,
quant_config=quant_config,
prefix=prefix)
self.adaptive = adaptive
pos_embed_arr = get_2d_sincos_pos_embed(embed_dim,
grid_size,
version=(2, 0))
self.pos_embed = nn.Parameter(
torch.from_numpy(pos_embed_arr).requires_grad_(False))
def forward(
self,
x: torch.Tensor,
tgt_sizes: Optional[torch.Tensor] = None,
attn_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if tgt_sizes is None:
tgt_sizes = int(math.sqrt(x.size(1)))
if self.adaptive:
pos_embed_arr = get_2d_sincos_pos_embed(self.embed_dim,
tgt_sizes,
version=(2, 0))
pos_embed = torch.from_numpy(pos_embed_arr).to(device=x.device,
dtype=x.dtype)
else:
pos_embed = get_abs_pos(self.pos_embed,
tgt_sizes).to(device=x.device,
dtype=x.dtype)
x, _ = self.kv_proj(x)
x = self.ln_kv(x).permute(1, 0, 2)
N = x.shape[1]
q = self.ln_q(self.query)
out = self.attn(
self._repeat(q, N) + self.pos_embed.unsqueeze(1),
x + pos_embed.unsqueeze(1),
x,
attn_mask=attn_mask,
)[0]
x = out.permute(1, 0, 2)
if self.do_post_projection:
x = self.ln_post(x)
x = x @ self.proj
return x