mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-01 11:01:49 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
1293 lines
52 KiB
Python
1293 lines
52 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""A layer that samples the next tokens from the model's outputs."""
|
|
import itertools
|
|
import warnings
|
|
from dataclasses import dataclass
|
|
from importlib.util import find_spec
|
|
from math import inf
|
|
from typing import Dict, Iterator, List, Optional, Tuple, Union
|
|
|
|
import msgspec
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
import vllm.envs as envs
|
|
from vllm.model_executor.layers.utils import apply_penalties
|
|
from vllm.model_executor.sampling_metadata import (SamplingMetadata,
|
|
SamplingTensors,
|
|
SequenceGroupToSample)
|
|
from vllm.sampling_params import SamplingType
|
|
from vllm.sequence import (VLLM_INVALID_TOKEN_ID,
|
|
CompletionSequenceGroupOutput, Logprob,
|
|
PromptLogprobs, SampleLogprobs, SequenceOutput)
|
|
from vllm.spec_decode.metrics import SpecDecodeWorkerMetrics
|
|
|
|
if envs.VLLM_USE_FLASHINFER_SAMPLER and find_spec("flashinfer"):
|
|
import flashinfer.sampling
|
|
# yapf: disable
|
|
from flashinfer.sampling import (
|
|
top_k_top_p_sampling_from_probs as flashinfer_top_k_top_p_sampling)
|
|
|
|
# yapf: enable
|
|
else:
|
|
flashinfer_top_k_top_p_sampling = None
|
|
|
|
|
|
def get_sampler() -> torch.nn.Module:
|
|
if envs.VLLM_USE_V1:
|
|
# Lazy import: the v1 package isn't distributed
|
|
from vllm.v1.sample.sampler import Sampler as V1Sampler
|
|
return V1Sampler()
|
|
return Sampler()
|
|
|
|
|
|
# (num_token_ids, num_parent_ids) per sequence group.
|
|
SampleResultType = List[Tuple[List[int], List[int]]]
|
|
|
|
# Types of temporary data structures used for
|
|
# computing sample_result
|
|
SampleMetadataType = Dict[SamplingType, Tuple[List[int],
|
|
List[SequenceGroupToSample]]]
|
|
MultinomialSamplesType = Dict[SamplingType, torch.Tensor]
|
|
SampleResultsDictType = Dict[int, Tuple[List[int], List[int]]]
|
|
|
|
|
|
# Encapsulates temporary data structures for computing
|
|
# sample_result.
|
|
#
|
|
# * For multi-step scheduling: must be returned
|
|
# by `Sampler.forward()` and used later to compute the pythonized
|
|
# sample_result
|
|
#
|
|
# * For single-step scheduling: consumed immediately
|
|
# inside `Sampler.forward()` to compute pythonized sample_result.
|
|
@dataclass
|
|
class SampleResultArgsType:
|
|
sample_metadata: SampleMetadataType
|
|
multinomial_samples: MultinomialSamplesType
|
|
sample_results_dict: SampleResultsDictType
|
|
sampling_metadata: SamplingMetadata
|
|
greedy_samples: Optional[torch.Tensor]
|
|
beam_search_logprobs: Optional[torch.Tensor]
|
|
|
|
|
|
# Union of non-deferred (single-step scheduling)
|
|
# vs deferred (multi-step scheduling)
|
|
# sample result types
|
|
MaybeDeferredSampleResultType = Union[SampleResultType, SampleResultArgsType]
|
|
|
|
# Abbreviation of the _sample() return type
|
|
SampleReturnType = Tuple[MaybeDeferredSampleResultType, Optional[torch.Tensor]]
|
|
|
|
|
|
class SamplerOutput(
|
|
msgspec.Struct,
|
|
omit_defaults=True, # type: ignore[call-arg]
|
|
array_like=True): # type: ignore[call-arg]
|
|
"""For each sequence group, we generate a list of SequenceOutput object,
|
|
each of which contains one possible candidate for the next token.
|
|
|
|
This data structure implements methods, so it can be used like a list, but
|
|
also has optional fields for device tensors.
|
|
"""
|
|
|
|
outputs: List[CompletionSequenceGroupOutput]
|
|
|
|
# On-device tensor containing probabilities of each token.
|
|
sampled_token_probs: Optional[torch.Tensor] = None
|
|
|
|
# On-device tensor containing the logprobs of each token.
|
|
logprobs: Optional["torch.Tensor"] = None
|
|
|
|
# Holds either (1) the pythonized sampler result (single-step scheduling)
|
|
# or (2) what will be arguments for later deferred pythonization of the
|
|
# sampler result (muliti-step scheduling)
|
|
deferred_sample_results_args: Optional[SampleResultArgsType] = None
|
|
|
|
# On-device tensor containing the sampled token ids.
|
|
sampled_token_ids: Optional[torch.Tensor] = None
|
|
# CPU tensor containing the sampled token ids. Used during multi-step to
|
|
# return the sampled token ids from last rank to AsyncLLMEngine to be
|
|
# 'broadcasted' to all other PP ranks for next step.
|
|
sampled_token_ids_cpu: Optional[torch.Tensor] = None
|
|
|
|
# Spec decode metrics populated by workers.
|
|
spec_decode_worker_metrics: Optional[SpecDecodeWorkerMetrics] = None
|
|
|
|
# Optional last hidden states from the model.
|
|
hidden_states: Optional[torch.Tensor] = None
|
|
|
|
# Optional prefill hidden states from the model
|
|
# (used for models like EAGLE).
|
|
prefill_hidden_states: Optional[torch.Tensor] = None
|
|
|
|
# Time taken in the forward pass for this across all workers
|
|
model_forward_time: Optional[float] = None
|
|
|
|
# Time taken in the model execute function. This will include model forward,
|
|
# block/sync across workers, cpu-gpu sync time and sampling time.
|
|
model_execute_time: Optional[float] = None
|
|
|
|
def __getitem__(self, idx: int) -> CompletionSequenceGroupOutput:
|
|
return self.outputs[idx]
|
|
|
|
def __setitem__(self, idx: int, value):
|
|
self.outputs[idx] = value
|
|
|
|
def __iter__(self) -> Iterator[CompletionSequenceGroupOutput]:
|
|
return iter(self.outputs)
|
|
|
|
def __len__(self):
|
|
return len(self.outputs)
|
|
|
|
def __eq__(self, other: object):
|
|
return isinstance(other,
|
|
self.__class__) and self.outputs == other.outputs
|
|
|
|
def __repr__(self) -> str:
|
|
"""Show the shape of a tensor instead of its values to reduce noise.
|
|
"""
|
|
sampled_token_probs_repr = ("None" if self.sampled_token_probs is None
|
|
else self.sampled_token_probs.shape)
|
|
sampled_token_ids_repr = ("None" if self.sampled_token_ids is None else
|
|
self.sampled_token_ids.shape)
|
|
return (
|
|
f"SamplerOutput(outputs={self.outputs}, "
|
|
f"sampled_token_probs={sampled_token_probs_repr}, "
|
|
f"sampled_token_ids={sampled_token_ids_repr}, "
|
|
f"spec_decode_worker_metrics={self.spec_decode_worker_metrics})")
|
|
|
|
|
|
class Sampler(nn.Module):
|
|
"""Samples the next tokens from the model's outputs.
|
|
|
|
This layer does the following:
|
|
1. Discard the hidden states that are not used for sampling (i.e., all
|
|
tokens except the final one in each prompt).
|
|
2. Compute the logits for the next tokens.
|
|
3. Apply presence, frequency and repetition penalties.
|
|
4. Apply temperature scaling.
|
|
5. Apply top-p and top-k truncation.
|
|
6. Sample the next tokens.
|
|
Here, each sequence group within the batch can have different sampling
|
|
parameters (e.g., sampling method, temperature, top-p, top-k, etc.).
|
|
|
|
The structure of the logits tensor is coupled with the seq_groups in
|
|
sampling_metadata. Typically, each sequence in each seq_group has one row in
|
|
logits for the next token to be sampled; however, for a seq_group with a
|
|
prompt request with the prompt_logprobs sampling parameter, there are rows
|
|
in logits for each token in the input prompt.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
# Whether or not the SamplerOutput should have on-device tensors
|
|
# containing the sampled token ids and probabilities. This is used by
|
|
# speculative decoding.
|
|
self.include_gpu_probs_tensor = False
|
|
self.should_modify_greedy_probs_inplace = False
|
|
|
|
def _init_sampling_tensors(
|
|
self,
|
|
logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
):
|
|
"""The goal here is to reuse sampling tensors between similar decode
|
|
runs. This is possible because sampling logic does not change between
|
|
decodes of the same sequences.
|
|
"""
|
|
_, vocab_size = logits.shape
|
|
|
|
# First free any existing stored sampling tensors.
|
|
# This is necessary because some sampling tensors may
|
|
# have pinned memory.
|
|
self._sampling_tensors = None
|
|
|
|
# Initialize new sampling tensors
|
|
(sampling_tensors, do_penalties, do_top_p_top_k,
|
|
do_min_p) = SamplingTensors.from_sampling_metadata(
|
|
sampling_metadata, vocab_size, logits.device, logits.dtype)
|
|
|
|
self._sampling_tensors = sampling_tensors
|
|
self._do_penalties = do_penalties
|
|
self._do_top_p_top_k = do_top_p_top_k
|
|
self._do_min_p = do_min_p
|
|
|
|
def forward(
|
|
self,
|
|
logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[SamplerOutput]:
|
|
"""
|
|
Single-step scheduling:
|
|
* Perform GPU-side sampling computation & compute
|
|
GPU-side logprobs tensor
|
|
* Pythonize sampling result & logprobs tensor
|
|
|
|
Multi-step scheduling:
|
|
* Perform GPU-side sampling computation & compute
|
|
GPU-side logprobs tensor
|
|
* Defer Pythonization of sampling result & logprobs
|
|
tensor
|
|
* Encapsulate arguments required for deferred Pythonization
|
|
in the :class:`SamplerOutput` structure
|
|
|
|
Args:
|
|
logits: (num_tokens, vocab_size).
|
|
sampling_metadata: Metadata for sampling.
|
|
"""
|
|
assert logits is not None
|
|
_, vocab_size = logits.shape
|
|
|
|
# Prepare sampling tensors with pinned memory to avoid blocking.
|
|
if not sampling_metadata.reuse_sampling_tensors:
|
|
self._init_sampling_tensors(logits, sampling_metadata)
|
|
elif self._do_penalties:
|
|
# In this case, the sampling tensors logic depends on
|
|
# "output_tokens" of a sequence. As a result, we cannot
|
|
# reuse sampling tensors, since "output_tokens" changes
|
|
# between decode runs.
|
|
self._init_sampling_tensors(logits, sampling_metadata)
|
|
|
|
assert self._sampling_tensors is not None
|
|
sampling_tensors = self._sampling_tensors
|
|
do_penalties = self._do_penalties
|
|
do_top_p_top_k = self._do_top_p_top_k
|
|
do_min_p = self._do_min_p
|
|
|
|
logits = _apply_min_tokens_penalty(logits, sampling_metadata)
|
|
|
|
# Apply presence and frequency penalties.
|
|
if do_penalties:
|
|
logits = apply_penalties(logits, sampling_tensors.prompt_tokens,
|
|
sampling_tensors.output_tokens,
|
|
sampling_tensors.presence_penalties,
|
|
sampling_tensors.frequency_penalties,
|
|
sampling_tensors.repetition_penalties)
|
|
|
|
# Use float32 to apply temperature scaling.
|
|
# Use in-place division to avoid creating a new tensor.
|
|
logits = logits.to(torch.float)
|
|
logits.div_(sampling_tensors.temperatures.unsqueeze(dim=1))
|
|
|
|
if do_top_p_top_k and flashinfer_top_k_top_p_sampling is None:
|
|
logits = _apply_top_k_top_p(logits, sampling_tensors.top_ps,
|
|
sampling_tensors.top_ks)
|
|
|
|
if do_min_p:
|
|
logits = _apply_min_p(logits, sampling_tensors.min_ps)
|
|
|
|
# We use float32 for probabilities and log probabilities.
|
|
# Compute the probabilities.
|
|
probs = torch.softmax(logits, dim=-1, dtype=torch.float)
|
|
# Compute the log probabilities.
|
|
logprobs = torch.log_softmax(logits, dim=-1, dtype=torch.float)
|
|
|
|
# Sample the next tokens.
|
|
maybe_deferred_sample_results, maybe_sampled_tokens_tensor = _sample(
|
|
probs,
|
|
logprobs,
|
|
sampling_metadata,
|
|
sampling_tensors,
|
|
include_gpu_probs_tensor=self.include_gpu_probs_tensor,
|
|
modify_greedy_probs=self._should_modify_greedy_probs_inplace,
|
|
)
|
|
|
|
if self.include_gpu_probs_tensor:
|
|
# Since we will defer sampler result Pythonization,
|
|
# preserve GPU-side tensors in support of later
|
|
# deferred pythonization of logprobs
|
|
assert maybe_sampled_tokens_tensor is not None
|
|
on_device_tensors = (probs, logprobs, maybe_sampled_tokens_tensor)
|
|
else:
|
|
# Since Pythonization has already happened, don't preserve
|
|
# GPU-side tensors.
|
|
on_device_tensors = None
|
|
|
|
# Get the logprobs query results.
|
|
prompt_logprobs = None
|
|
sample_logprobs = None
|
|
if not sampling_metadata.skip_sampler_cpu_output:
|
|
# Pythonize logprobs now (GPU -> CPU); do not defer.
|
|
assert not isinstance(maybe_deferred_sample_results,
|
|
SampleResultArgsType)
|
|
prompt_logprobs, sample_logprobs = get_logprobs(
|
|
logprobs, sampling_metadata, maybe_deferred_sample_results)
|
|
|
|
return _build_sampler_output(
|
|
maybe_deferred_sample_results,
|
|
sampling_metadata,
|
|
prompt_logprobs,
|
|
sample_logprobs,
|
|
on_device_tensors=on_device_tensors,
|
|
skip_sampler_cpu_output=sampling_metadata.skip_sampler_cpu_output)
|
|
|
|
@property
|
|
def _should_modify_greedy_probs_inplace(self) -> bool:
|
|
"""Whether or not the sampler should modify the probability distribution
|
|
of greedily-sampled tokens such that multinomial sampling would sample
|
|
the greedily-sampled token.
|
|
|
|
In other words, if True then we set the probability of the greedily-
|
|
sampled token to 1.
|
|
|
|
This is used by speculative decoding, which requires that the sampling
|
|
method be encoded into the probability distribution.
|
|
"""
|
|
return self.should_modify_greedy_probs_inplace
|
|
|
|
|
|
def _apply_min_tokens_penalty(
|
|
logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> torch.Tensor:
|
|
"""Apply min_tokens penalty which sets stop tokens to -inf if min_tokens
|
|
have not been generated yet
|
|
"""
|
|
# list of indices in logits that will be set to -inf
|
|
logits_to_penalize: List[Tuple[int, int]] = []
|
|
logits_applied = 0
|
|
for seq_group in sampling_metadata.seq_groups:
|
|
seq_ids = seq_group.seq_ids
|
|
sampling_params = seq_group.sampling_params
|
|
|
|
sample_indices = seq_group.sample_indices
|
|
logits_applied += len(sample_indices) + len(
|
|
seq_group.prompt_logprob_indices)
|
|
if not seq_group.do_sample:
|
|
continue
|
|
|
|
start_idx = sample_indices[0]
|
|
min_tokens = sampling_params.min_tokens
|
|
token_ids_to_penalize = sampling_params.all_stop_token_ids
|
|
if min_tokens > 0 and token_ids_to_penalize:
|
|
seqs_to_penalize: List[int] = []
|
|
for j, seq_id in enumerate(seq_ids):
|
|
seq_data = seq_group.seq_data[seq_id]
|
|
if len(seq_data.output_token_ids_array) < min_tokens:
|
|
seqs_to_penalize.append(j)
|
|
|
|
if seqs_to_penalize:
|
|
# convert to the index into logits
|
|
seqs_to_penalize = [start_idx + j for j in seqs_to_penalize]
|
|
# itertools.product pairs each seq index with every token id
|
|
logits_to_penalize.extend(
|
|
itertools.product(seqs_to_penalize, token_ids_to_penalize))
|
|
|
|
if logits_to_penalize:
|
|
# use zip and * to group indices along each dimension
|
|
# eg. [ (1,2), (1,3), (5,6) ] -> ( (1,1,5), (2,3,6) )
|
|
logits[tuple(zip(*logits_to_penalize))] = -float("inf")
|
|
|
|
# verifies that no rows in logits were missed unexpectedly
|
|
assert logits_applied == logits.shape[0]
|
|
return logits
|
|
|
|
|
|
def _apply_top_k_top_p(
|
|
logits: torch.Tensor,
|
|
p: torch.Tensor,
|
|
k: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
logits_sort, logits_idx = logits.sort(dim=-1, descending=False)
|
|
|
|
# Apply top-k.
|
|
top_k_mask = logits_sort.size(1) - k.to(torch.long)
|
|
# Get all the top_k values.
|
|
top_k_mask = logits_sort.gather(1, top_k_mask.unsqueeze(dim=1))
|
|
top_k_mask = logits_sort < top_k_mask
|
|
logits_sort.masked_fill_(top_k_mask, -float("inf"))
|
|
|
|
# Apply top-p.
|
|
probs_sort = logits_sort.softmax(dim=-1)
|
|
probs_sum = probs_sort.cumsum(dim=-1)
|
|
top_p_mask = probs_sum <= 1 - p.unsqueeze(dim=1)
|
|
# at least one
|
|
top_p_mask[:, -1] = False
|
|
logits_sort.masked_fill_(top_p_mask, -float("inf"))
|
|
|
|
# Re-sort the probabilities.
|
|
logits = torch.empty_like(logits_sort).scatter_(dim=-1,
|
|
index=logits_idx,
|
|
src=logits_sort)
|
|
return logits
|
|
|
|
|
|
def _apply_min_p(
|
|
logits: torch.Tensor,
|
|
min_p: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Adapted from
|
|
https://github.com/oobabooga/text-generation-webui/blob/3146124ec01f02c8fb1650a6517cf1b60b537aaf/modules/sampler_hijack.py#L16C17-L16C17
|
|
"""
|
|
probs = torch.softmax(logits, dim=-1)
|
|
top_probs, _ = probs.max(dim=-1, keepdim=True)
|
|
scaled_min_p = min_p.unsqueeze_(dim=1) * top_probs
|
|
tokens_to_remove = probs < scaled_min_p
|
|
logits = logits.masked_fill_(tokens_to_remove, -float("inf"))
|
|
|
|
return logits
|
|
|
|
|
|
def _greedy_sample(
|
|
selected_seq_groups: List[SequenceGroupToSample],
|
|
samples: torch.Tensor,
|
|
) -> SampleResultType:
|
|
"""Run greedy sampling on a given samples.
|
|
|
|
Args:
|
|
selected_seq_groups: A list of sequence groups batched.
|
|
samples: (num_selected_samples,) A tensor of samples. The length of
|
|
samples could be smaller than selected_seq_groups if
|
|
seq_group.do_sample is False.
|
|
Returns:
|
|
Tuple of (next_token_ids, parent_ids). The length of returned list is
|
|
same as the length of selected_seq_groups. If the corresponding
|
|
seq_group has do_sample=False, tuple contains ([], [])
|
|
"""
|
|
samples_lst = samples.tolist()
|
|
sample_idx = 0
|
|
results: SampleResultType = []
|
|
for seq_group in selected_seq_groups:
|
|
if not seq_group.do_sample:
|
|
results.append(([], []))
|
|
continue
|
|
|
|
seq_ids = seq_group.seq_ids
|
|
num_parent_seqs = len(seq_ids)
|
|
assert num_parent_seqs == 1, (
|
|
"Greedy sampling should have only one seq.")
|
|
parent_ids = list(range(num_parent_seqs))
|
|
next_token_ids = [samples_lst[sample_idx]]
|
|
results.append((next_token_ids, parent_ids))
|
|
sample_idx += num_parent_seqs
|
|
return results
|
|
|
|
|
|
def _random_sample(
|
|
selected_seq_groups: List[SequenceGroupToSample],
|
|
random_samples: torch.Tensor,
|
|
) -> SampleResultType:
|
|
"""Run random sampling on a given samples.
|
|
|
|
Args:
|
|
selected_seq_groups: A list of sequence groups batched.
|
|
random_samples: (num_selected_samples,) A tensor of samples. The
|
|
length of samples could be smaller than selected_seq_groups if
|
|
seq_group.do_sample is False.
|
|
Returns:
|
|
Tuple of (next_token_ids, parent_ids). The length of returned list is
|
|
same as the length of selected_seq_groups. If the corresponding
|
|
seq_group has do_sample=False, tuple contains ([], [])
|
|
"""
|
|
# Find the maximum n value of the prompt phase requests.
|
|
random_samples = random_samples.cpu()
|
|
sample_idx = 0
|
|
results: SampleResultType = []
|
|
for seq_group in selected_seq_groups:
|
|
if not seq_group.do_sample:
|
|
results.append(([], []))
|
|
continue
|
|
|
|
seq_ids = seq_group.seq_ids
|
|
sampling_params = seq_group.sampling_params
|
|
is_prompt = seq_group.is_prompt
|
|
num_parent_seqs = len(seq_ids)
|
|
if is_prompt:
|
|
# Prompt phase.
|
|
parent_ids = [0] * sampling_params.n
|
|
next_token_ids = random_samples[
|
|
sample_idx, :sampling_params.n].tolist()
|
|
else:
|
|
# Generation phase.
|
|
parent_ids = list(range(num_parent_seqs))
|
|
next_token_ids = random_samples[sample_idx:sample_idx +
|
|
num_parent_seqs, 0].tolist()
|
|
results.append((next_token_ids, parent_ids))
|
|
sample_idx += num_parent_seqs
|
|
return results
|
|
|
|
|
|
def _beam_search_sample(
|
|
selected_seq_groups: List[SequenceGroupToSample],
|
|
logprobs: torch.Tensor,
|
|
) -> SampleResultType:
|
|
"""Run beam sampling on a given samples.
|
|
|
|
Args:
|
|
selected_seq_groups: A list of sequence groups batched.
|
|
logprobs: (num_selected_samples, vocab_size,) A tensor of logprob
|
|
on selected sample indices.
|
|
Returns:
|
|
Tuple of (next_token_ids, parent_ids). The length of returned list is
|
|
same as the length of selected_seq_groups. If the corresponding
|
|
seq_group has do_sample=False, tuple contains ([], [])
|
|
"""
|
|
# We sample 2 * beam_width candidates to make sure that with high
|
|
# probability we can get `beam_width` candidates in addition to
|
|
# the finished sequences for the next iteration. See
|
|
# https://github.com/tensorflow/tensor2tensor/blob/bafdc1b67730430d38d6ab802cbd51f9d053ba2e/tensor2tensor/utils/beam_search.py#L557-L563
|
|
# for details. See also HF reference:
|
|
# https://github.com/huggingface/transformers/blob/a4dd53d88e4852f023332d284ff07a01afcd5681/src/transformers/generation/utils.py#L3063-L3065
|
|
#
|
|
# NOTE: Beam search is not vectorized, so its speed can be slower than
|
|
# other sampling methods.
|
|
sample_idx = 0
|
|
results: SampleResultType = []
|
|
for seq_group in selected_seq_groups:
|
|
if not seq_group.do_sample:
|
|
results.append(([], []))
|
|
continue
|
|
|
|
is_prompt = seq_group.is_prompt
|
|
seq_ids, sampling_params = seq_group.seq_ids, seq_group.sampling_params
|
|
num_parent_seqs = len(seq_ids)
|
|
beam_width = sampling_params.n
|
|
seq_group_logprobs = logprobs[sample_idx:sample_idx + num_parent_seqs]
|
|
if is_prompt:
|
|
# Prompt phase.
|
|
assert num_parent_seqs == 1, (
|
|
"Prompt input should have only one seq.")
|
|
parent_ids = [0] * (2 * beam_width)
|
|
_, next_token_ids = torch.topk(seq_group_logprobs[0],
|
|
2 * beam_width)
|
|
next_token_ids = next_token_ids.tolist()
|
|
else:
|
|
# Generation phase.
|
|
cumulative_logprobs: List[float] = [
|
|
seq_group.seq_data[seq_id].cumulative_logprob
|
|
for seq_id in seq_ids
|
|
]
|
|
cumulative_logprobs_tensor = torch.tensor(
|
|
cumulative_logprobs,
|
|
dtype=torch.float,
|
|
device=seq_group_logprobs.device)
|
|
seq_group_logprobs = (seq_group_logprobs +
|
|
cumulative_logprobs_tensor.unsqueeze(dim=1))
|
|
_, topk_ids = torch.topk(seq_group_logprobs.flatten(),
|
|
2 * beam_width)
|
|
topk_ids = topk_ids.tolist()
|
|
vocab_size = seq_group_logprobs.size(-1)
|
|
parent_ids = [i // vocab_size for i in topk_ids]
|
|
next_token_ids = [i % vocab_size for i in topk_ids]
|
|
results.append((next_token_ids, parent_ids))
|
|
sample_idx += num_parent_seqs
|
|
assert sample_idx == logprobs.size(0)
|
|
return results
|
|
|
|
|
|
# torch.multinomial forces a GPU<->CPU sync.
|
|
# Therefore, we use an optimized implementation instead.
|
|
# Note that we always sample with replacement.
|
|
# probs will be modified in place, but this is fine, as we pass
|
|
# in a copy already.
|
|
def _multinomial(
|
|
probs: torch.Tensor,
|
|
num_samples: int,
|
|
seq_groups: Optional[List[SequenceGroupToSample]] = None,
|
|
) -> torch.Tensor:
|
|
if num_samples > 1:
|
|
probs = probs.repeat_interleave(num_samples, dim=0)
|
|
q = torch.empty_like(probs)
|
|
if seq_groups is None:
|
|
q.exponential_()
|
|
else:
|
|
sample_idx = 0
|
|
for seq_group in seq_groups:
|
|
seq_ids = seq_group.seq_ids
|
|
stride = len(seq_ids) * num_samples
|
|
assert seq_group.generator is not None
|
|
q[sample_idx:sample_idx +
|
|
stride].exponential_(generator=seq_group.generator)
|
|
sample_idx += stride
|
|
return probs.div_(q).argmax(dim=1).view(-1, num_samples)
|
|
|
|
|
|
def _top_k_top_p_multinomial_with_flashinfer(
|
|
probs: torch.Tensor, top_ks: torch.Tensor, top_ps: torch.Tensor,
|
|
num_samples: int, seq_groups: Optional[List[SequenceGroupToSample]]):
|
|
max_top_k_round = 32
|
|
if num_samples > 1:
|
|
probs = probs.repeat_interleave(num_samples, dim=0)
|
|
top_ks = top_ks.repeat_interleave(num_samples)
|
|
top_ps = top_ps.repeat_interleave(num_samples)
|
|
batch_size = probs.shape[0]
|
|
uniform_samples = torch.empty((max_top_k_round, batch_size),
|
|
device=probs.device)
|
|
if seq_groups is None:
|
|
uniform_samples.uniform_()
|
|
else:
|
|
sample_idx = 0
|
|
for seq_group in seq_groups:
|
|
seq_ids = seq_group.seq_ids
|
|
stride = len(seq_ids) * num_samples
|
|
assert seq_group.generator is not None
|
|
uniform_samples[:, sample_idx:sample_idx +
|
|
stride].uniform_(generator=seq_group.generator)
|
|
sample_idx += stride
|
|
batch_next_token_ids, success = flashinfer_top_k_top_p_sampling(
|
|
probs,
|
|
uniform_samples,
|
|
top_ks,
|
|
top_ps,
|
|
)
|
|
if not success.all():
|
|
warnings.warn("FlashInfer rejection sampling failed, fallback.",
|
|
stacklevel=1)
|
|
probs = flashinfer.sampling.top_k_renorm_prob(probs, top_ks)
|
|
probs = flashinfer.sampling.top_p_renorm_prob(probs, top_ps)
|
|
batch_next_token_ids = flashinfer.sampling.sampling_from_probs(
|
|
probs, uniform_samples[0])
|
|
return batch_next_token_ids.view(-1, num_samples)
|
|
|
|
|
|
def get_pythonized_sample_results(
|
|
sample_result_args: SampleResultArgsType) -> SampleResultType:
|
|
'''This function consumes GPU-side sampler results and computes
|
|
Pythonized CPU-side sampler results (GPU -> CPU sync.)
|
|
|
|
Single-step scheduling: this function is invoked at sampling-time
|
|
for immediate Pythonization.
|
|
|
|
Multi-step scheduling: Pythonization is deferred until after multiple
|
|
GPU-side steps have been completed.
|
|
|
|
Args:
|
|
sample_result_args: GPU-side inputs to the Pythonization process
|
|
|
|
Returns:
|
|
Pythonized sampler results
|
|
'''
|
|
|
|
(
|
|
sample_metadata,
|
|
sampling_metadata,
|
|
greedy_samples,
|
|
multinomial_samples,
|
|
beam_search_logprobs,
|
|
sample_results_dict,
|
|
) = (
|
|
sample_result_args.sample_metadata,
|
|
sample_result_args.sampling_metadata,
|
|
sample_result_args.greedy_samples,
|
|
sample_result_args.multinomial_samples,
|
|
sample_result_args.beam_search_logprobs,
|
|
sample_result_args.sample_results_dict,
|
|
)
|
|
|
|
for sampling_type in SamplingType:
|
|
if sampling_type not in sample_metadata:
|
|
continue
|
|
(seq_group_id, seq_groups) = sample_metadata[sampling_type]
|
|
if sampling_type == SamplingType.GREEDY:
|
|
sample_results = _greedy_sample(seq_groups, greedy_samples)
|
|
elif sampling_type in (SamplingType.RANDOM, SamplingType.RANDOM_SEED):
|
|
sample_results = _random_sample(seq_groups,
|
|
multinomial_samples[sampling_type])
|
|
elif sampling_type == SamplingType.BEAM:
|
|
sample_results = _beam_search_sample(seq_groups,
|
|
beam_search_logprobs)
|
|
sample_results_dict.update(zip(seq_group_id, sample_results))
|
|
|
|
return [
|
|
sample_results_dict.get(i, ([], []))
|
|
for i in range(len(sampling_metadata.seq_groups))
|
|
]
|
|
|
|
|
|
def _sample_with_torch(
|
|
probs: torch.Tensor,
|
|
logprobs: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
sampling_tensors: SamplingTensors,
|
|
include_gpu_probs_tensor: bool,
|
|
modify_greedy_probs: bool,
|
|
) -> SampleReturnType:
|
|
'''Torch-oriented _sample() implementation.
|
|
|
|
Single-step scheduling:
|
|
* Perform GPU-side sampling computation
|
|
* Immediately Pythonize sampling result
|
|
|
|
Multi-step scheduling:
|
|
* Perform GPU-side sampling computation
|
|
* Defer Pythonization & preserve GPU-side
|
|
tensors required for Pythonization
|
|
'''
|
|
|
|
categorized_seq_group_ids: Dict[SamplingType, List[int]] = {
|
|
t: []
|
|
for t in SamplingType
|
|
}
|
|
categorized_sample_indices = sampling_metadata.categorized_sample_indices
|
|
for i, seq_group in enumerate(sampling_metadata.seq_groups):
|
|
sampling_params = seq_group.sampling_params
|
|
sampling_type = sampling_params.sampling_type
|
|
categorized_seq_group_ids[sampling_type].append(i)
|
|
|
|
sample_results_dict: SampleResultsDictType = {}
|
|
sample_metadata: SampleMetadataType = {}
|
|
multinomial_samples: MultinomialSamplesType = {}
|
|
greedy_samples: Optional[torch.Tensor] = None
|
|
beam_search_logprobs: Optional[torch.Tensor] = None
|
|
|
|
# Create output tensor for sampled token ids.
|
|
if include_gpu_probs_tensor:
|
|
sampled_token_ids_tensor = torch.full((logprobs.shape[0], 1),
|
|
VLLM_INVALID_TOKEN_ID,
|
|
dtype=torch.long,
|
|
device=logprobs.device)
|
|
else:
|
|
sampled_token_ids_tensor = None
|
|
|
|
# Counterintiutively, having two loops here is actually faster.
|
|
# The first loop can run without waiting on GPU<->CPU sync.
|
|
for sampling_type in SamplingType:
|
|
sample_indices = categorized_sample_indices[sampling_type]
|
|
num_tokens = len(sample_indices)
|
|
if num_tokens == 0:
|
|
continue
|
|
|
|
seq_group_id = categorized_seq_group_ids[sampling_type]
|
|
seq_groups = [sampling_metadata.seq_groups[i] for i in seq_group_id]
|
|
sample_metadata[sampling_type] = (seq_group_id, seq_groups)
|
|
long_sample_indices = sample_indices.long()
|
|
if sampling_type == SamplingType.GREEDY:
|
|
greedy_samples = torch.argmax(logprobs[long_sample_indices],
|
|
dim=-1)
|
|
|
|
if sampled_token_ids_tensor is not None:
|
|
# Store sampled tokens in output tensor.
|
|
sampled_token_ids_tensor[
|
|
long_sample_indices] = greedy_samples.unsqueeze(-1)
|
|
|
|
if modify_greedy_probs:
|
|
# If required, modify the probabilities such that sampling from
|
|
# the modified distribution would always sample the argmax
|
|
# token id.
|
|
_modify_greedy_probs_inplace(logprobs, probs,
|
|
long_sample_indices,
|
|
greedy_samples)
|
|
|
|
elif sampling_type in (SamplingType.RANDOM, SamplingType.RANDOM_SEED):
|
|
max_n_in_batch = 1
|
|
for seq_group in seq_groups:
|
|
if seq_group.is_prompt:
|
|
sampling_params = seq_group.sampling_params
|
|
max_n_in_batch = max(max_n_in_batch, sampling_params.n)
|
|
seq_groups_arg = (None if sampling_type == SamplingType.RANDOM else
|
|
seq_groups)
|
|
|
|
if flashinfer_top_k_top_p_sampling is not None:
|
|
multinomial_samples[
|
|
sampling_type] = _top_k_top_p_multinomial_with_flashinfer(
|
|
probs[long_sample_indices],
|
|
sampling_tensors.top_ks[long_sample_indices],
|
|
sampling_tensors.top_ps[long_sample_indices],
|
|
max_n_in_batch,
|
|
seq_groups_arg,
|
|
)
|
|
else:
|
|
multinomial_samples[sampling_type] = _multinomial(
|
|
probs[long_sample_indices],
|
|
max_n_in_batch,
|
|
seq_groups=seq_groups_arg)
|
|
|
|
if sampled_token_ids_tensor is not None:
|
|
# Store sampled tokens in output tensor.
|
|
sampled_token_ids_tensor[long_sample_indices] = \
|
|
multinomial_samples[sampling_type].to(torch.long)
|
|
|
|
elif sampling_type == SamplingType.BEAM:
|
|
beam_search_logprobs = logprobs[sample_indices]
|
|
else:
|
|
raise ValueError(f"Unsupported sampling type: {sampling_type}")
|
|
|
|
# Encapsulate arguments for computing Pythonized sampler
|
|
# results, whether deferred or otherwise.
|
|
maybe_deferred_args = SampleResultArgsType(
|
|
sampling_metadata=sampling_metadata,
|
|
sample_metadata=sample_metadata,
|
|
multinomial_samples=multinomial_samples,
|
|
greedy_samples=greedy_samples,
|
|
beam_search_logprobs=beam_search_logprobs,
|
|
sample_results_dict=sample_results_dict)
|
|
|
|
if not sampling_metadata.skip_sampler_cpu_output:
|
|
# GPU<->CPU sync happens here.
|
|
# This also converts the sampler output to a Python object.
|
|
# Return Pythonized sampler result & sampled token ids
|
|
return get_pythonized_sample_results(
|
|
maybe_deferred_args), sampled_token_ids_tensor
|
|
else:
|
|
# Defer sampler result Pythonization; return deferred
|
|
# Pythonization args & sampled token ids
|
|
return (
|
|
maybe_deferred_args,
|
|
sampled_token_ids_tensor,
|
|
)
|
|
|
|
|
|
def _sample(
|
|
probs: torch.Tensor,
|
|
logprobs: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
sampling_tensors: SamplingTensors,
|
|
include_gpu_probs_tensor: bool,
|
|
modify_greedy_probs: bool,
|
|
) -> SampleReturnType:
|
|
"""
|
|
Args:
|
|
probs: (num_query_tokens_in_batch, num_vocab)
|
|
logprobs: (num_query_tokens_in_batch, num_vocab)
|
|
sampling_metadata: The metadata for a batch for sampling.
|
|
sampling_tensors: Tensors that include sampling related metadata.
|
|
|
|
Returns:
|
|
(next_token_ids, parent_seq_ids) for each seq group in a batch.
|
|
If sampling is skipped, it returns ([], [])
|
|
sampled_token_ids_tensor: A tensor of sampled token ids.
|
|
"""
|
|
return _sample_with_torch(
|
|
probs,
|
|
logprobs,
|
|
sampling_metadata,
|
|
sampling_tensors,
|
|
include_gpu_probs_tensor=include_gpu_probs_tensor,
|
|
modify_greedy_probs=modify_greedy_probs,
|
|
)
|
|
|
|
|
|
def _get_ranks(x: torch.Tensor, indices: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
This function calculates the ranks of the chosen tokens in a logprob tensor.
|
|
|
|
Args:
|
|
x (torch.Tensor): 2D logprob tensor of shape (N, M)
|
|
where N is the no. of tokens and M is the vocab dim.
|
|
indices (torch.Tensor): List of chosen token indices.
|
|
|
|
Returns:
|
|
torch.Tensor: 1D tensor of shape (N,) where N is the no. of tokens.
|
|
Each element in the returned tensor represents the rank
|
|
of the chosen token in the input logprob tensor.
|
|
"""
|
|
vals = x[torch.arange(0, len(x), device=x.device, dtype=indices.dtype),
|
|
indices]
|
|
result = (x > vals[:, None])
|
|
del vals
|
|
return result.sum(1).add_(1)
|
|
|
|
|
|
def get_logprobs(
|
|
logprobs: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
sample_results: SampleResultType,
|
|
) -> Tuple[List[Optional[PromptLogprobs]], List[SampleLogprobs]]:
|
|
"""Return sample logprobs and prompt logprobs.
|
|
|
|
The logic consists of 3 parts.
|
|
- Select indices to compute logprob from, ranks of token ids, and
|
|
the top k token ids from logprobs.
|
|
- Compute prompt logprobs if required.
|
|
- Compute sample logprobs if required.
|
|
|
|
Args:
|
|
logprobs: (num_query_tokens_across_batch, num_vocab). Each query token's
|
|
logprob per vocab. Sequence groups' query tokens are batched in a
|
|
single flattened tensor. For example, assuming there are N
|
|
seq groups, it is sorted by prefill tokens for seq_group_1 (if
|
|
prompt logprob is enabled), decode tokens for seq_group_1 (if
|
|
sampling is required), prefill tokens for seq_group_2, ...
|
|
sampling_metadata: The sampling metadata.
|
|
sample_results: (num_seq_groups) The tuple of (next_token_ids,
|
|
parent_ids) for each sequence group. When beam search is enabled,
|
|
sample_results can contain different number of seq_ids from
|
|
sampling_metadata.seq_groups. It is because beam search creates
|
|
2 * BEAM_WIDTH number of samples (whereas there are only up to
|
|
BEAM_WIDTH number of seq_ids).
|
|
|
|
Returns:
|
|
A tuple of prompt and sample logprobs per sequence group in a batch.
|
|
"""
|
|
# The index of query token to calculate logprobs. It includes both
|
|
# prompt and sample logprob indices.
|
|
query_indices: List[int] = []
|
|
# The next token ids to get the logprob value from.
|
|
next_token_ids: List[int] = []
|
|
# The largest requested number of logprobs. We find logprobs as many as the
|
|
# largest num logprobs in this API. If every logprobs is None, it will be
|
|
# set to -1.
|
|
largest_num_logprobs = -1
|
|
|
|
# Select indices to compute logprob from, ranks of token ids, and the top
|
|
# k token ids from logprobs.
|
|
for (seq_group, sample_result) in zip(sampling_metadata.seq_groups,
|
|
sample_results):
|
|
sampling_params = seq_group.sampling_params
|
|
|
|
# Update indices and tokens for prompt logprobs.
|
|
if (seq_group.is_prompt
|
|
and sampling_params.prompt_logprobs is not None):
|
|
largest_num_logprobs = max(largest_num_logprobs,
|
|
sampling_params.prompt_logprobs)
|
|
next_prompt_tokens = _get_next_prompt_tokens(seq_group)
|
|
query_indices.extend(seq_group.prompt_logprob_indices)
|
|
next_token_ids.extend(next_prompt_tokens)
|
|
|
|
# Update indices and next tokenes for sample logprob.
|
|
if seq_group.do_sample:
|
|
token_ids, parent_seq_ids = sample_result
|
|
# NOTE: We cannot directly use sample_indices because
|
|
# sample_indices only contain parent seq_ids of a previous step.
|
|
# The current step may have different number of seq_ids, and
|
|
# we can obtain it from `sample_result[1]`.
|
|
query_idx = seq_group.sample_indices[0]
|
|
query_indices.extend(
|
|
[query_idx + parent_id for parent_id in parent_seq_ids])
|
|
next_token_ids.extend(token_ids)
|
|
|
|
if sampling_params.logprobs is not None:
|
|
largest_num_logprobs = max(largest_num_logprobs,
|
|
sampling_params.logprobs)
|
|
|
|
assert len(next_token_ids) == len(query_indices)
|
|
|
|
if len(query_indices) == 0:
|
|
empty_sampled_logprob: SampleLogprobs = []
|
|
empty_prompt_logprob: Optional[PromptLogprobs] = None
|
|
return [empty_prompt_logprob], [empty_sampled_logprob]
|
|
|
|
selected_logprobs, ranks = None, None
|
|
top_logprobs, top_token_ids = None, None
|
|
|
|
# If largest_num_logprobs == -1, i.e. no logprobs are requested, we can
|
|
# skip the whole logprob calculation.
|
|
if largest_num_logprobs >= 0:
|
|
query_indices_gpu = torch.tensor(query_indices, device=logprobs.device)
|
|
next_token_ids_gpu = torch.tensor(next_token_ids,
|
|
device=logprobs.device)
|
|
|
|
# (num_selected_query_tokens, num_logprobs). Note that query_indices can
|
|
# contain duplicates if beam search is enabled.
|
|
selected_logprobs = logprobs[[
|
|
query_indices_gpu,
|
|
next_token_ids_gpu,
|
|
]]
|
|
ranks = _get_ranks(
|
|
logprobs[query_indices_gpu],
|
|
next_token_ids_gpu,
|
|
)
|
|
assert selected_logprobs.shape[0] == ranks.shape[0]
|
|
|
|
# We need to compute top k only if there exists logprobs > 0.
|
|
if largest_num_logprobs > 0:
|
|
# Logprobs of topk tokens for a batch of sequence groups.
|
|
# (num_query_tokens_across_batch).
|
|
top_logprobs, top_token_ids = torch.topk(logprobs,
|
|
largest_num_logprobs,
|
|
dim=-1)
|
|
top_logprobs = top_logprobs.to('cpu')
|
|
top_token_ids = top_token_ids.to('cpu')
|
|
|
|
selected_logprobs = selected_logprobs.to('cpu')
|
|
ranks = ranks.to('cpu')
|
|
|
|
# Find prompt/sample logprobs.
|
|
prompt_logprobs_per_seq_group: List[Optional[PromptLogprobs]] = []
|
|
sample_logprobs_per_seq_group: List[SampleLogprobs] = []
|
|
top_logprob_idx = 0
|
|
selected_logprobs_idx = 0
|
|
|
|
for seq_group, sample_result in zip(sampling_metadata.seq_groups,
|
|
sample_results):
|
|
(prompt_logprobs, top_logprob_idx,
|
|
selected_logprobs_idx) = _get_prompt_logprob_if_needed(
|
|
seq_group, selected_logprobs, ranks, top_token_ids, top_logprobs,
|
|
selected_logprobs_idx, top_logprob_idx)
|
|
prompt_logprobs_per_seq_group.append(prompt_logprobs)
|
|
|
|
(sampled_logprobs, top_logprob_idx,
|
|
selected_logprobs_idx) = _get_sampled_logprob_if_needed(
|
|
seq_group, sample_result, selected_logprobs, ranks, top_token_ids,
|
|
top_logprobs, selected_logprobs_idx, top_logprob_idx)
|
|
sample_logprobs_per_seq_group.append(sampled_logprobs)
|
|
|
|
return prompt_logprobs_per_seq_group, sample_logprobs_per_seq_group
|
|
|
|
|
|
def _get_prompt_logprob_if_needed(
|
|
seq_group: SequenceGroupToSample,
|
|
selected_logprobs: torch.Tensor,
|
|
ranks: torch.Tensor,
|
|
top_token_ids: torch.Tensor,
|
|
top_logprobs: torch.Tensor,
|
|
selected_logprobs_idx: int,
|
|
top_logprob_idx: int,
|
|
):
|
|
"""Compute the prompt logprob from a sequence group if needed."""
|
|
sampling_params = seq_group.sampling_params
|
|
is_prompt = seq_group.is_prompt
|
|
|
|
# Find prompt logprobs
|
|
prompt_logprobs: Optional[PromptLogprobs] = None
|
|
if is_prompt and sampling_params.prompt_logprobs is not None:
|
|
prompt_logprobs = []
|
|
num_logprobs = sampling_params.prompt_logprobs
|
|
next_prompt_tokens = _get_next_prompt_tokens(seq_group)
|
|
# Pre-select indexes and create a list. It is faster than calling .item
|
|
# repetitively.
|
|
selected_logprob_items = selected_logprobs[
|
|
selected_logprobs_idx:selected_logprobs_idx +
|
|
len(next_prompt_tokens)].tolist()
|
|
rank_items = ranks[selected_logprobs_idx:selected_logprobs_idx +
|
|
len(next_prompt_tokens)].tolist()
|
|
|
|
for idx, token_id in enumerate(next_prompt_tokens):
|
|
# Calculate the prompt logprob of the real prompt tokens.
|
|
# {token_id: (logprob, rank_from_vocab)}
|
|
prompt_logprobs_dict: Dict[int, Tuple[float, int]] = {
|
|
token_id: (selected_logprob_items[idx], rank_items[idx])
|
|
}
|
|
|
|
# Add top K prompt logprobs along with its rank.
|
|
if num_logprobs > 0:
|
|
top_ids = top_token_ids[
|
|
top_logprob_idx, :num_logprobs].tolist()
|
|
top_probs = top_logprobs[
|
|
top_logprob_idx, :num_logprobs].tolist()
|
|
# Top K is already sorted by rank, so we can use 1 ~
|
|
# num_logprobs + 1 for rank.
|
|
top_ranks = range(1, num_logprobs + 1)
|
|
prompt_logprobs_dict.update({
|
|
top_id: (top_prob, rank)
|
|
for top_id, top_prob, rank in zip(top_ids, top_probs,
|
|
top_ranks)
|
|
})
|
|
prompt_logprobs.append({
|
|
token_id: Logprob(*logprob_and_rank)
|
|
for token_id, logprob_and_rank in prompt_logprobs_dict.items()
|
|
})
|
|
# + 1 to go to the next prompt token.
|
|
top_logprob_idx += 1
|
|
|
|
# + len(next_prompt_tokens) to go to the next prompt.
|
|
selected_logprobs_idx += len(next_prompt_tokens)
|
|
return prompt_logprobs, top_logprob_idx, selected_logprobs_idx
|
|
|
|
|
|
def _get_sampled_logprob_if_needed(
|
|
seq_group: SequenceGroupToSample,
|
|
sample_result: Tuple[List[int], List[int]],
|
|
selected_logprobs: torch.Tensor,
|
|
ranks: torch.Tensor,
|
|
top_token_ids: torch.Tensor,
|
|
top_logprobs: torch.Tensor,
|
|
selected_logprobs_idx: int,
|
|
top_logprob_idx: int,
|
|
):
|
|
"""Compute the sample logprob if needed."""
|
|
seq_ids = seq_group.seq_ids
|
|
num_logprobs = seq_group.sampling_params.logprobs
|
|
sampled_logprobs: SampleLogprobs = []
|
|
next_token_ids, parent_seq_ids = sample_result
|
|
|
|
if seq_group.do_sample:
|
|
assert len(next_token_ids) > 0
|
|
if num_logprobs is None:
|
|
for next_token_id in next_token_ids:
|
|
# Use a dummy logprob
|
|
sampled_logprobs.append({next_token_id: Logprob(inf)})
|
|
else:
|
|
# Pre-select items from tensor. tolist() is faster than repetitive
|
|
# `.item()` calls.
|
|
selected_logprob_items = selected_logprobs[
|
|
selected_logprobs_idx:selected_logprobs_idx +
|
|
len(next_token_ids)].tolist()
|
|
rank_items = ranks[selected_logprobs_idx:selected_logprobs_idx +
|
|
len(next_token_ids)].tolist()
|
|
for idx, (next_token_id, parent_id) in enumerate(
|
|
zip(next_token_ids, parent_seq_ids)):
|
|
# Get the logprob of a sampled token.
|
|
sampled_logprobs_dict = {
|
|
next_token_id:
|
|
(selected_logprob_items[idx], rank_items[idx])
|
|
}
|
|
if num_logprobs is not None and num_logprobs > 0:
|
|
# Get top K logprobs.
|
|
top_ids = top_token_ids[top_logprob_idx +
|
|
parent_id, :num_logprobs].tolist()
|
|
top_probs = top_logprobs[
|
|
top_logprob_idx + parent_id, :num_logprobs].tolist()
|
|
# Top K is already sorted by rank, so we can use 1 ~
|
|
# num_logprobs + 1 for rank.
|
|
top_ranks = range(1, num_logprobs + 1)
|
|
sampled_logprobs_dict.update({
|
|
top_id: (top_prob, rank)
|
|
for top_id, top_prob, rank in zip(
|
|
top_ids, top_probs, top_ranks)
|
|
})
|
|
|
|
sampled_logprobs.append({
|
|
token_id: Logprob(*logprob_and_rank)
|
|
for token_id, logprob_and_rank in
|
|
sampled_logprobs_dict.items()
|
|
})
|
|
|
|
# NOTE: This part of code is not intuitive. `selected_logprobs` include
|
|
# logprobs for the current step, which has len(next_token_ids) tokens
|
|
# per sequence group. `logprobs` includes logprobs from the previous
|
|
# steps, which has len(seq_ids) tokens per sequence group.
|
|
|
|
# Iterate to the next sequence group in a batch.
|
|
selected_logprobs_idx += len(next_token_ids)
|
|
# Iterate to the next sequence group in a batch.
|
|
top_logprob_idx += len(seq_ids)
|
|
return sampled_logprobs, top_logprob_idx, selected_logprobs_idx
|
|
|
|
|
|
def _modify_greedy_probs_inplace(logprobs: torch.Tensor, probs: torch.Tensor,
|
|
sample_indices: torch.Tensor,
|
|
greedy_samples: torch.Tensor) -> None:
|
|
"""Modify the probability distributions of the greedily-sampled tokens such
|
|
that each sampled token has a "probability" of 1.0. This is required by
|
|
speculative decoding, which depends on the sampling method being encoded
|
|
within the probability distribution for correctness.
|
|
|
|
# Why do we only need to do this for greedy sampling?
|
|
|
|
vLLM's sampler performs the following steps for greedy or multinomial
|
|
(random) sampling:
|
|
1. Get logits from model.
|
|
2. Modify logits according to per-sequence sampling parameters.
|
|
- Multiply by temperature, top-k and top-p masking, penalize tokens
|
|
according to their frequency, etc.
|
|
3. Sample a token.
|
|
- Random sampling simply samples from the modified probability
|
|
distribution.
|
|
- Greedy sampling performs `argmax` to obtain the token with the
|
|
highest likelihood.
|
|
|
|
Ignoring greedy sampling for a moment, we find that the computed probability
|
|
distribution has the following property: we can sample from it independently
|
|
and find that the token sampled by the Sampler has a frequency corresponding
|
|
to how often we see it in our sampling. In other words, for tokens sampled
|
|
with vLLM's random SamplingType, the computed probability distribution
|
|
encodes the sampling methodology completely.
|
|
|
|
Greedy sampling does not normally have this property. vLLM modifies logits
|
|
according to sampling params, then performs `argmax`, then returns the
|
|
sampled token and the computed probability distribution. If we sample from
|
|
the distribution, we'll find the likelihood of the greedily-sampled token
|
|
is not always 1.0.
|
|
|
|
Since lossless speculative decoding requires that the sampling methodology
|
|
be encoded within the probability distribution, we are motivated to modify
|
|
the probability distribution such that the sampled token has probability 1
|
|
when speculative decoding is used.
|
|
|
|
NOTE: Alternatively, we could use an extremely low temperature to achieve
|
|
greedy sampling using multinomial computation and unite the codepaths. This
|
|
has implications on the overall design of the sampler, e.g. how to record
|
|
accurate logprobs for the user, so this improvement is deferred to later.
|
|
"""
|
|
# NOTE: logprobs are not modified so they can be returned to the user.
|
|
probs[sample_indices, :] = 0
|
|
probs[sample_indices, greedy_samples] = 1.0
|
|
|
|
|
|
def _build_sampler_output(
|
|
maybe_deferred_sample_results: MaybeDeferredSampleResultType,
|
|
sampling_metadata: SamplingMetadata,
|
|
prompt_logprobs: Optional[List[Optional[PromptLogprobs]]],
|
|
sample_logprobs: Optional[List[SampleLogprobs]],
|
|
on_device_tensors: Optional[Tuple[torch.Tensor, torch.Tensor,
|
|
torch.Tensor]],
|
|
skip_sampler_cpu_output: bool = False,
|
|
) -> SamplerOutput:
|
|
"""Construct Python objects with the output of sampling.
|
|
|
|
Args:
|
|
on_device_tensors: Tuple containing on-device tensors with the
|
|
probabilities used in sampling and the sampled token ids. This
|
|
allows post-processing without copies to CPU/serialization, e.g. in
|
|
speculative decoding rejection sampling.
|
|
"""
|
|
sampler_output: List[CompletionSequenceGroupOutput] = []
|
|
|
|
if skip_sampler_cpu_output:
|
|
assert isinstance(maybe_deferred_sample_results, SampleResultArgsType)
|
|
deferred_sample_results_args = maybe_deferred_sample_results
|
|
else:
|
|
assert prompt_logprobs is not None
|
|
assert sample_logprobs is not None
|
|
assert not isinstance(maybe_deferred_sample_results,
|
|
SampleResultArgsType)
|
|
deferred_sample_results_args = None
|
|
|
|
for (seq_group, sample_result, group_prompt_logprobs,
|
|
group_sample_logprobs) in zip(sampling_metadata.seq_groups,
|
|
maybe_deferred_sample_results,
|
|
prompt_logprobs, sample_logprobs):
|
|
seq_ids = seq_group.seq_ids
|
|
next_token_ids, parent_ids = sample_result
|
|
seq_outputs: List[SequenceOutput] = []
|
|
for parent_id, next_token_id, logprobs in zip(
|
|
parent_ids, next_token_ids, group_sample_logprobs):
|
|
seq_outputs.append(
|
|
SequenceOutput(seq_ids[parent_id], next_token_id,
|
|
logprobs))
|
|
sampler_output.append(
|
|
CompletionSequenceGroupOutput(seq_outputs,
|
|
group_prompt_logprobs))
|
|
|
|
# If not specified, store None values in SamplerOutput.
|
|
if on_device_tensors is not None:
|
|
(sampled_token_probs, logprobs_tensor,
|
|
sampled_token_ids) = on_device_tensors
|
|
else:
|
|
sampled_token_probs, logprobs_tensor, sampled_token_ids = (None, None,
|
|
None)
|
|
|
|
return SamplerOutput(
|
|
outputs=sampler_output,
|
|
sampled_token_probs=sampled_token_probs,
|
|
sampled_token_ids=sampled_token_ids,
|
|
logprobs=logprobs_tensor,
|
|
deferred_sample_results_args=deferred_sample_results_args)
|
|
|
|
|
|
def _get_next_prompt_tokens(seq_group: SequenceGroupToSample) -> List[int]:
|
|
"""Get a list of next prompt tokens to compute logprob from a
|
|
given sequence group.
|
|
|
|
It is used to compute prompt logprob. Imagine you have logprob for each
|
|
query token. Query token needs to know the next prompt token id to compute
|
|
prompt logprob. This is a helper to obtain next prompt token ids.
|
|
|
|
This API has to be used only when the caller knows seq_group is in prefill
|
|
stage.
|
|
|
|
Returns:
|
|
A list of next prompt tokens to compute logprob.
|
|
"""
|
|
assert seq_group.is_prompt, (
|
|
"Caller should ensure the sequence group is in a prefill stage.")
|
|
seq_ids = seq_group.seq_ids
|
|
query_len = seq_group.query_len
|
|
assert query_len is not None
|
|
# prompt has only 1 seq id.
|
|
assert len(seq_ids) == 1
|
|
seq_data = seq_group.seq_data[seq_ids[0]]
|
|
computed_len = seq_data.get_num_computed_tokens()
|
|
prompt_tokens = seq_data.prompt_token_ids
|
|
# +1 because we are looking for a next prompt token.
|
|
next_token_index_start = computed_len + 1
|
|
next_token_index_end = min(computed_len + query_len + 1,
|
|
len(prompt_tokens))
|
|
next_prompt_tokens = prompt_tokens[
|
|
next_token_index_start:next_token_index_end]
|
|
return next_prompt_tokens
|