mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-20 01:35:39 +08:00
398 lines
14 KiB
Python
398 lines
14 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Adapted from
|
|
# https://huggingface.co/inceptionai/jais-30b-chat-v3/blob/main/modeling_jais.py
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2023 the Jais authors and HuggingFace Inc. team. All rights
|
|
# reserved.
|
|
# Copyright 2023 Cerebras Systems.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only Jais model compatible with HuggingFace weights."""
|
|
|
|
import math
|
|
from collections.abc import Iterable
|
|
from itertools import islice
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from vllm.attention.layer import Attention
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, VllmConfig
|
|
from vllm.distributed import (
|
|
get_pp_group,
|
|
get_tensor_model_parallel_rank,
|
|
get_tensor_model_parallel_world_size,
|
|
)
|
|
from vllm.model_executor.layers.linear import (
|
|
ColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.transformers_utils.configs import JAISConfig
|
|
|
|
from .interfaces import SupportsPP
|
|
from .utils import (
|
|
is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory,
|
|
make_layers,
|
|
maybe_prefix,
|
|
)
|
|
|
|
|
|
class SwiGLUActivation(nn.Module):
|
|
def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
|
|
return x1 * nn.functional.silu(x2)
|
|
|
|
|
|
def _get_alibi_slopes(n):
|
|
def get_slopes_power_of_2(n):
|
|
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
|
|
ratio = start
|
|
return [start * ratio**i for i in range(n)]
|
|
|
|
if math.log2(n).is_integer():
|
|
return get_slopes_power_of_2(n)
|
|
else:
|
|
closest_power_of_2 = 2 ** math.floor(math.log2(n))
|
|
return (
|
|
get_slopes_power_of_2(closest_power_of_2)
|
|
+ _get_alibi_slopes(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
|
|
)
|
|
|
|
|
|
class JAISAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: JAISConfig,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
total_num_heads = config.num_attention_heads
|
|
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
|
|
assert total_num_heads % tensor_model_parallel_world_size == 0
|
|
self.num_heads = total_num_heads // tensor_model_parallel_world_size
|
|
self.head_dim = self.hidden_size // total_num_heads
|
|
if hasattr(config, "scale_qk_dot_by_d"):
|
|
config.mup_scale_qk_dot_by_d = config.scale_qk_dot_by_d
|
|
self.attn_scale_power = 1.0 if config.mup_scale_qk_dot_by_d else 0.5
|
|
self.scale = self.head_dim**-self.attn_scale_power
|
|
|
|
self.c_attn = QKVParallelLinear(
|
|
self.hidden_size,
|
|
self.head_dim,
|
|
total_num_heads,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.c_attn",
|
|
)
|
|
self.c_proj = RowParallelLinear(
|
|
self.hidden_size,
|
|
self.hidden_size,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.c_proj",
|
|
)
|
|
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
head_start = tp_rank * self.num_heads
|
|
head_end = (tp_rank + 1) * self.num_heads
|
|
alibi_slopes = _get_alibi_slopes(total_num_heads)
|
|
alibi_slopes = alibi_slopes[head_start:head_end]
|
|
self.attn = Attention(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
scale=self.scale,
|
|
alibi_slopes=alibi_slopes,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attn",
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.c_attn(hidden_states)
|
|
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
|
attn_output = self.attn(q, k, v)
|
|
attn_output, _ = self.c_proj(attn_output)
|
|
return attn_output
|
|
|
|
|
|
class JAISMLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
intermediate_size: int,
|
|
config: JAISConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
hidden_size = config.hidden_size
|
|
self.swiglu = config.activation_function == "swiglu"
|
|
self.c_fc = ColumnParallelLinear(
|
|
hidden_size,
|
|
intermediate_size,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.c_fc",
|
|
)
|
|
self.c_fc2 = (
|
|
ColumnParallelLinear(
|
|
hidden_size,
|
|
intermediate_size,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.c_fc2",
|
|
)
|
|
if self.swiglu
|
|
else None
|
|
)
|
|
self.c_proj = RowParallelLinear(
|
|
intermediate_size,
|
|
hidden_size,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.c_proj",
|
|
)
|
|
|
|
self.act = SwiGLUActivation()
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
if self.swiglu:
|
|
hidden_states2, _ = self.c_fc2(hidden_states)
|
|
hidden_states, _ = self.c_fc(hidden_states)
|
|
hidden_states = (
|
|
self.act(hidden_states, hidden_states2)
|
|
if self.swiglu
|
|
else self.act(hidden_states)
|
|
)
|
|
hidden_states, _ = self.c_proj(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class JAISBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: JAISConfig,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
hidden_size = config.hidden_size
|
|
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
|
|
|
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
|
self.attn = JAISAttention(
|
|
config, cache_config, quant_config, prefix=f"{prefix}.attn"
|
|
)
|
|
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
|
self.mlp = JAISMLP(inner_dim, config, quant_config, prefix=f"{prefix}.mlp")
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
residual = hidden_states
|
|
hidden_states = self.ln_1(hidden_states)
|
|
attn_output = self.attn(
|
|
hidden_states=hidden_states,
|
|
)
|
|
# residual connection
|
|
hidden_states = attn_output + residual
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.ln_2(hidden_states)
|
|
feed_forward_hidden_states = self.mlp(hidden_states)
|
|
# residual connection
|
|
hidden_states = residual + feed_forward_hidden_states
|
|
return hidden_states
|
|
|
|
|
|
@support_torch_compile
|
|
class JAISModel(nn.Module):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
self.config = config
|
|
assert not config.add_cross_attention
|
|
assert not config.scale_attn_by_inverse_layer_idx
|
|
assert not config.reorder_and_upcast_attn
|
|
self.embed_dim = config.hidden_size
|
|
self.wte = VocabParallelEmbedding(config.vocab_size, self.embed_dim)
|
|
self.wpe = (
|
|
nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
|
if config.position_embedding_type != "alibi"
|
|
else None
|
|
)
|
|
if hasattr(config, "embeddings_scale"):
|
|
self.embeddings_scale = config.embeddings_scale
|
|
else:
|
|
self.embeddings_scale = config.mup_embeddings_scale
|
|
|
|
self.start_layer, self.end_layer, self.h = make_layers(
|
|
config.num_hidden_layers,
|
|
lambda prefix: JAISBlock(
|
|
config=config,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=prefix,
|
|
),
|
|
prefix=f"{prefix}.h",
|
|
)
|
|
|
|
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
|
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
|
|
["hidden_states"], config.n_embd
|
|
)
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.wte(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
position_ids: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> IntermediateTensors | torch.Tensor:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_input_ids(input_ids)
|
|
if self.wpe is not None:
|
|
position_embeds = self.wpe(position_ids)
|
|
hidden_states = inputs_embeds + position_embeds
|
|
else:
|
|
hidden_states = inputs_embeds
|
|
hidden_states *= torch.tensor(
|
|
float(self.embeddings_scale), dtype=hidden_states.dtype
|
|
)
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
|
|
for layer in islice(self.h, self.start_layer, self.end_layer):
|
|
hidden_states = layer(hidden_states)
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors({"hidden_states": hidden_states})
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class JAISLMHeadModel(nn.Module, SupportsPP):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
self.transformer = JAISModel(
|
|
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "transformer")
|
|
)
|
|
if self.config.tie_word_embeddings:
|
|
self.lm_head = self.transformer.wte
|
|
else:
|
|
self.lm_head = ParallelLMHead(
|
|
self.config.vocab_size,
|
|
self.config.hidden_size,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
if hasattr(config, "width_scale"):
|
|
self.output_logits_scale = config.width_scale
|
|
else:
|
|
self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale
|
|
self.logits_processor = LogitsProcessor(
|
|
vocab_size=config.vocab_size, scale=self.output_logits_scale
|
|
)
|
|
self.make_empty_intermediate_tensors = (
|
|
self.transformer.make_empty_intermediate_tensors
|
|
)
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.transformer.embed_input_ids(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> IntermediateTensors | torch.Tensor:
|
|
hidden_states = self.transformer(
|
|
input_ids, positions, intermediate_tensors, inputs_embeds
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
logits = self.logits_processor(self.lm_head, hidden_states)
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
|
loaded_params: set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
if "lm_head.weight" in name:
|
|
# GPT-2 ties the weights of the embedding layer and the final
|
|
# linear layer.
|
|
continue
|
|
if ".attn.bias" in name or ".attn.masked_bias" in name:
|
|
# Skip attention mask.
|
|
# NOTE: "c_attn.bias" should not be skipped.
|
|
continue
|
|
if "relative_pe" in name:
|
|
continue
|
|
if not name.startswith("transformer."):
|
|
name = "transformer." + name
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
# The HF's GPT-2 implementation uses Conv1D instead of Linear.
|
|
# Because of this, we need to transpose the weights.
|
|
# Note(zhuohan): the logic below might break quantized models.
|
|
for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]:
|
|
if conv1d_weight_name not in name:
|
|
continue
|
|
if not name.endswith(".weight"):
|
|
continue
|
|
loaded_weight = loaded_weight.t()
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|