mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-12 14:55:49 +08:00
151 lines
5.3 KiB
Python
151 lines
5.3 KiB
Python
import asyncio
|
|
import sys
|
|
from io import StringIO
|
|
from typing import Awaitable, List
|
|
|
|
import aiohttp
|
|
|
|
from vllm.engine.arg_utils import AsyncEngineArgs, nullable_str
|
|
from vllm.engine.async_llm_engine import AsyncLLMEngine
|
|
from vllm.entrypoints.openai.protocol import (BatchRequestInput,
|
|
BatchRequestOutput,
|
|
BatchResponseData,
|
|
ChatCompletionResponse,
|
|
ErrorResponse)
|
|
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
|
|
from vllm.logger import init_logger
|
|
from vllm.usage.usage_lib import UsageContext
|
|
from vllm.utils import FlexibleArgumentParser, random_uuid
|
|
from vllm.version import __version__ as VLLM_VERSION
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
def parse_args():
|
|
parser = FlexibleArgumentParser(
|
|
description="vLLM OpenAI-Compatible batch runner.")
|
|
parser.add_argument(
|
|
"-i",
|
|
"--input-file",
|
|
required=True,
|
|
type=str,
|
|
help=
|
|
"The path or url to a single input file. Currently supports local file "
|
|
"paths, or the http protocol (http or https). If a URL is specified, "
|
|
"the file should be available via HTTP GET.")
|
|
parser.add_argument(
|
|
"-o",
|
|
"--output-file",
|
|
required=True,
|
|
type=str,
|
|
help="The path or url to a single output file. Currently supports "
|
|
"local file paths, or web (http or https) urls. If a URL is specified,"
|
|
" the file should be available via HTTP PUT.")
|
|
parser.add_argument("--response-role",
|
|
type=nullable_str,
|
|
default="assistant",
|
|
help="The role name to return if "
|
|
"`request.add_generation_prompt=true`.")
|
|
|
|
parser = AsyncEngineArgs.add_cli_args(parser)
|
|
return parser.parse_args()
|
|
|
|
|
|
async def read_file(path_or_url: str) -> str:
|
|
if path_or_url.startswith("http://") or path_or_url.startswith("https://"):
|
|
async with aiohttp.ClientSession() as session, \
|
|
session.get(path_or_url) as resp:
|
|
return await resp.text()
|
|
else:
|
|
with open(path_or_url, "r", encoding="utf-8") as f:
|
|
return f.read()
|
|
|
|
|
|
async def write_file(path_or_url: str, data: str) -> None:
|
|
if path_or_url.startswith("http://") or path_or_url.startswith("https://"):
|
|
async with aiohttp.ClientSession() as session, \
|
|
session.put(path_or_url, data=data.encode("utf-8")):
|
|
pass
|
|
else:
|
|
# We should make this async, but as long as this is always run as a
|
|
# standalone program, blocking the event loop won't effect performance
|
|
# in this particular case.
|
|
with open(path_or_url, "w", encoding="utf-8") as f:
|
|
f.write(data)
|
|
|
|
|
|
async def run_request(chat_serving: OpenAIServingChat,
|
|
request: BatchRequestInput) -> BatchRequestOutput:
|
|
chat_request = request.body
|
|
chat_response = await chat_serving.create_chat_completion(chat_request)
|
|
|
|
if isinstance(chat_response, ChatCompletionResponse):
|
|
batch_output = BatchRequestOutput(
|
|
id=f"vllm-{random_uuid()}",
|
|
custom_id=request.custom_id,
|
|
response=BatchResponseData(
|
|
body=chat_response, request_id=f"vllm-batch-{random_uuid()}"),
|
|
error=None,
|
|
)
|
|
elif isinstance(chat_response, ErrorResponse):
|
|
batch_output = BatchRequestOutput(
|
|
id=f"vllm-{random_uuid()}",
|
|
custom_id=request.custom_id,
|
|
response=BatchResponseData(
|
|
status_code=chat_response.code,
|
|
request_id=f"vllm-batch-{random_uuid()}"),
|
|
error=chat_response,
|
|
)
|
|
else:
|
|
raise ValueError("Request must not be sent in stream mode")
|
|
|
|
return batch_output
|
|
|
|
|
|
async def main(args):
|
|
if args.served_model_name is not None:
|
|
served_model_names = args.served_model_name
|
|
else:
|
|
served_model_names = [args.model]
|
|
|
|
engine_args = AsyncEngineArgs.from_cli_args(args)
|
|
engine = AsyncLLMEngine.from_engine_args(
|
|
engine_args, usage_context=UsageContext.OPENAI_BATCH_RUNNER)
|
|
|
|
# When using single vLLM without engine_use_ray
|
|
model_config = await engine.get_model_config()
|
|
|
|
openai_serving_chat = OpenAIServingChat(
|
|
engine,
|
|
model_config,
|
|
served_model_names,
|
|
args.response_role,
|
|
)
|
|
|
|
# Submit all requests in the file to the engine "concurrently".
|
|
response_futures: List[Awaitable[BatchRequestOutput]] = []
|
|
for request_json in (await read_file(args.input_file)).strip().split("\n"):
|
|
request = BatchRequestInput.model_validate_json(request_json)
|
|
response_futures.append(run_request(openai_serving_chat, request))
|
|
|
|
responses = await asyncio.gather(*response_futures)
|
|
|
|
output_buffer = StringIO()
|
|
for response in responses:
|
|
print(response.model_dump_json(), file=output_buffer)
|
|
|
|
output_buffer.seek(0)
|
|
await write_file(args.output_file, output_buffer.read().strip())
|
|
|
|
# Temporary workaround for https://github.com/vllm-project/vllm/issues/4789
|
|
sys.exit(0)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parse_args()
|
|
|
|
logger.info("vLLM API server version %s", VLLM_VERSION)
|
|
logger.info("args: %s", args)
|
|
|
|
asyncio.run(main(args))
|