汪志鹏 829bbd7882
[New Model]mBART model (#22883)
Signed-off-by: 汪志鹏 <wangzhipeng628@gmail.com>
2025-08-16 12:16:58 +00:00

124 lines
3.7 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Optional
import pytest
from transformers import AutoModelForSeq2SeqLM
from vllm.sequence import SampleLogprobs
from ....conftest import DecoderPromptType, HfRunner, VllmRunner
from ...utils import check_logprobs_close
def vllm_to_hf_output(
vllm_output: tuple[list[int], str, Optional[SampleLogprobs]],
decoder_prompt_type: DecoderPromptType,
):
"""Sanitize vllm output to be comparable with hf output."""
output_ids, output_str, out_logprobs = vllm_output
hf_output_str = output_str + "</s>"
return output_ids, hf_output_str, out_logprobs
def run_test(
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
prompts: list[dict[str, str]],
decoder_prompt_type: DecoderPromptType,
model: str,
*,
dtype: str,
max_tokens: int,
num_logprobs: int,
tensor_parallel_size: int,
distributed_executor_backend: Optional[str] = None,
) -> None:
'''
Test the vLLM mBART model by validating it against HuggingFace (HF).
(Docstring content is omitted for brevity)
'''
vllm_prompts = prompts
if decoder_prompt_type == DecoderPromptType.NONE:
vllm_prompts = [{
"encoder_prompt": p['encoder_prompt'],
"decoder_prompt": ""
} for p in prompts]
vllm_kwargs = {
"hf_overrides": {
"architectures": ["MBartForConditionalGeneration"]
}
}
with vllm_runner(model,
dtype=dtype,
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
enforce_eager=True,
**vllm_kwargs) as vllm_model: # type: ignore
vllm_outputs = vllm_model.generate_encoder_decoder_greedy_logprobs(
vllm_prompts, max_tokens, num_logprobs)
hf_kwargs = {
"top_k": None,
"num_beams": 1,
"repetition_penalty": 1.0,
"top_p": 1.0,
"length_penalty": 1.0,
"early_stopping": False,
"no_repeat_ngram_size": None,
"min_length": 0
}
with hf_runner(model, dtype=dtype,
auto_cls=AutoModelForSeq2SeqLM) as hf_model:
hf_kwargs["decoder_start_token_id"] = (
hf_model.tokenizer.lang_code_to_id["ro_RO"])
hf_outputs = (
hf_model.generate_encoder_decoder_greedy_logprobs_limit(
prompts, # HF runner still uses the original prompts
max_tokens,
num_logprobs,
**hf_kwargs,
))
hf_skip_tokens = 0
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=[
vllm_to_hf_output(vllm_output, decoder_prompt_type)
for vllm_output in vllm_outputs
],
name_0="hf",
name_1="vllm",
num_outputs_0_skip_tokens=hf_skip_tokens,
)
@pytest.mark.parametrize(
"model",
[pytest.param("facebook/mbart-large-en-ro")],
)
@pytest.mark.parametrize("dtype", ["float", "bfloat16"])
@pytest.mark.parametrize("max_tokens", [64])
@pytest.mark.parametrize("num_logprobs", [5])
@pytest.mark.parametrize("decoder_prompt_type", list(DecoderPromptType))
def test_models(hf_runner, vllm_runner, example_encoder_decoder_prompts, model,
dtype, max_tokens, num_logprobs, decoder_prompt_type) -> None:
run_test(
hf_runner,
vllm_runner,
example_encoder_decoder_prompts[decoder_prompt_type],
decoder_prompt_type,
model,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
tensor_parallel_size=1,
)