mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 03:15:20 +08:00
458 lines
16 KiB
Python
458 lines
16 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import copy
|
|
|
|
import pytest
|
|
import torch._dynamo
|
|
|
|
from tests.compile.backend import LazyInitPass, TestBackend
|
|
from tests.v1.attention.utils import BatchSpec, create_common_attn_metadata
|
|
from vllm._custom_ops import cutlass_scaled_fp4_mm, scaled_fp4_quant
|
|
from vllm.attention import Attention, AttentionMetadata
|
|
from vllm.attention.backends.registry import _Backend
|
|
from vllm.attention.selector import global_force_attn_backend_context_manager
|
|
from vllm.compilation.fusion import QUANT_OPS
|
|
from vllm.compilation.fusion_attn import ATTN_OP, AttnFusionPass
|
|
from vllm.compilation.fx_utils import find_op_nodes
|
|
from vllm.compilation.noop_elimination import NoOpEliminationPass
|
|
from vllm.compilation.post_cleanup import PostCleanupPass
|
|
from vllm.config import (
|
|
CacheConfig,
|
|
CompilationConfig,
|
|
CompilationLevel,
|
|
ModelConfig,
|
|
PassConfig,
|
|
SchedulerConfig,
|
|
VllmConfig,
|
|
set_current_vllm_config,
|
|
)
|
|
from vllm.forward_context import get_forward_context, set_forward_context
|
|
from vllm.model_executor.layers.quantization.utils.quant_utils import (
|
|
kFp8StaticTensorSym,
|
|
kNvfp4Quant,
|
|
)
|
|
from vllm.model_executor.layers.quantization.utils.w8a8_utils import Fp8LinearOp
|
|
from vllm.platforms import current_platform
|
|
from vllm.utils import is_torch_equal_or_newer
|
|
from vllm.v1.kv_cache_interface import AttentionSpec
|
|
|
|
FP8_DTYPE = current_platform.fp8_dtype()
|
|
FP4_DTYPE = torch.uint8
|
|
|
|
# globals needed for string-import custom Dynamo backend field
|
|
backend: TestBackend | None = None
|
|
backend_unfused: TestBackend | None = None
|
|
|
|
|
|
class AttentionQuantPatternModel(torch.nn.Module):
|
|
"""Base model for AttentionQuantPattern fusion."""
|
|
|
|
def __init__(
|
|
self,
|
|
num_qo_heads: int,
|
|
num_kv_heads: int,
|
|
head_size: int,
|
|
kv_cache_dtype: torch.dtype,
|
|
device: torch.device,
|
|
vllm_config: VllmConfig,
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
self.num_qo_heads = num_qo_heads
|
|
self.num_kv_heads = num_kv_heads
|
|
self.head_size = head_size
|
|
self.kv_cache_dtype = kv_cache_dtype
|
|
self.device = device
|
|
self.vllm_config = vllm_config
|
|
|
|
self.attn = Attention(
|
|
num_heads=self.num_qo_heads,
|
|
head_size=self.head_size,
|
|
scale=1.0 / (self.head_size**0.5),
|
|
num_kv_heads=self.num_kv_heads,
|
|
cache_config=vllm_config.cache_config,
|
|
prefix="model.layers.0.self_attn.attn",
|
|
)
|
|
self.attn._k_scale = self.attn._k_scale.to(device)
|
|
self.attn._v_scale = self.attn._v_scale.to(device)
|
|
|
|
self.block_size = 16
|
|
|
|
# Initialize attn MetadataBuilder
|
|
self.builder = self.attn.attn_backend.get_builder_cls()(
|
|
kv_cache_spec=AttentionSpec(
|
|
block_size=self.block_size,
|
|
num_kv_heads=self.num_kv_heads,
|
|
head_size=self.head_size,
|
|
dtype=self.kv_cache_dtype,
|
|
),
|
|
layer_names=[self.attn.layer_name],
|
|
vllm_config=self.vllm_config,
|
|
device=self.device,
|
|
)
|
|
|
|
def build_attn_metadata(self, batch_size: int) -> AttentionMetadata:
|
|
"""Initialize attention metadata."""
|
|
|
|
# Create common attn metadata
|
|
batch_spec = BatchSpec(seq_lens=[1] * batch_size, query_lens=[1] * batch_size)
|
|
common_attn_metadata = create_common_attn_metadata(
|
|
batch_spec, self.block_size, self.device, arange_block_indices=True
|
|
)
|
|
|
|
max_blocks = (max(batch_spec.seq_lens) + self.block_size - 1) // self.block_size
|
|
num_blocks = batch_size * max_blocks
|
|
backend = self.attn.backend
|
|
|
|
# Create dummy KV cache for the selected backend
|
|
if backend == _Backend.ROCM_ATTN:
|
|
# k/v as 1st dimention
|
|
# HND: [num_blocks, num_kv_heads, block_size, head_size]
|
|
kv_cache = torch.zeros(
|
|
2,
|
|
num_blocks,
|
|
self.num_kv_heads,
|
|
self.block_size,
|
|
self.head_size,
|
|
dtype=self.kv_cache_dtype,
|
|
device=self.device,
|
|
)
|
|
elif backend == _Backend.ROCM_AITER_UNIFIED_ATTN:
|
|
# k/v as 1st dimention
|
|
# NHD: [num_blocks, block_size, num_kv_heads, head_size]
|
|
kv_cache = torch.zeros(
|
|
2,
|
|
num_blocks,
|
|
self.block_size,
|
|
self.num_kv_heads,
|
|
self.head_size,
|
|
dtype=self.kv_cache_dtype,
|
|
device=self.device,
|
|
)
|
|
elif backend == _Backend.TRITON_ATTN:
|
|
# k/v as 2nd dimention
|
|
# NHD: [num_blocks, block_size, num_kv_heads, head_size]
|
|
kv_cache = torch.zeros(
|
|
num_blocks,
|
|
2,
|
|
self.num_kv_heads,
|
|
self.block_size,
|
|
self.head_size,
|
|
dtype=self.kv_cache_dtype,
|
|
device=self.device,
|
|
)
|
|
elif backend == _Backend.FLASHINFER:
|
|
kv_cache = torch.zeros(
|
|
num_blocks,
|
|
2,
|
|
self.num_kv_heads,
|
|
self.block_size,
|
|
self.head_size,
|
|
dtype=self.kv_cache_dtype,
|
|
device=self.device,
|
|
).permute(0, 1, 3, 2, 4)
|
|
else:
|
|
raise ValueError(f"Unsupported backend: {backend}")
|
|
self.attn.kv_cache = [kv_cache]
|
|
|
|
# Build attn metadata
|
|
self.attn_metadata = self.builder.build(
|
|
common_prefix_len=0, common_attn_metadata=common_attn_metadata
|
|
)
|
|
|
|
return self.attn_metadata
|
|
|
|
|
|
class TestAttentionFp8StaticQuantPatternModel(AttentionQuantPatternModel):
|
|
"""Test model for AttentionFp8StaticQuantPattern fusion."""
|
|
|
|
quant_key = kFp8StaticTensorSym
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
|
|
self.fp8_linear = Fp8LinearOp(
|
|
act_quant_static=self.quant_key.scale.static,
|
|
act_quant_group_shape=self.quant_key.scale.group_shape,
|
|
)
|
|
|
|
hidden_size = self.num_qo_heads * self.head_size
|
|
self.w = kwargs.get(
|
|
"w",
|
|
{
|
|
"weight": torch.randn(hidden_size, hidden_size)
|
|
.to(dtype=FP8_DTYPE, device=self.device)
|
|
.t(),
|
|
"wscale": torch.tensor([1.0], dtype=torch.float32, device=self.device),
|
|
"scale": torch.tensor([1.0], dtype=torch.float32, device=self.device),
|
|
},
|
|
)
|
|
|
|
def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
|
|
"""Forward pass that creates the pattern to be fused."""
|
|
attn_output = self.attn(q, k, v)
|
|
return self.fp8_linear.apply(
|
|
input=attn_output,
|
|
weight=self.w["weight"],
|
|
weight_scale=self.w["wscale"],
|
|
input_scale=self.w["scale"],
|
|
)
|
|
|
|
|
|
class TestAttentionNvfp4QuantPatternModel(AttentionQuantPatternModel):
|
|
"""Test model for AttentionNvfp4QuantPattern fusion."""
|
|
|
|
quant_key = kNvfp4Quant
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
|
|
hidden_size = self.num_qo_heads * self.head_size
|
|
self.w = kwargs.get(
|
|
"w",
|
|
{
|
|
"weight": torch.randint(
|
|
256,
|
|
(hidden_size, hidden_size // 2),
|
|
dtype=FP4_DTYPE,
|
|
device=self.device,
|
|
),
|
|
"wscale_swizzled": torch.randn(hidden_size, hidden_size // 16).to(
|
|
dtype=FP8_DTYPE, device=self.device
|
|
),
|
|
"wscale": torch.tensor([500], dtype=torch.float32, device=self.device),
|
|
"scale": torch.tensor([0.002], dtype=torch.float32, device=self.device),
|
|
},
|
|
)
|
|
|
|
def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
|
|
"""Forward pass that creates the pattern to be fused."""
|
|
attn_output = self.attn(q, k, v)
|
|
quant_output, output_block_scale = scaled_fp4_quant(
|
|
attn_output, 1 / self.w["scale"]
|
|
)
|
|
return cutlass_scaled_fp4_mm(
|
|
a=quant_output,
|
|
b=self.w["weight"],
|
|
block_scale_a=output_block_scale,
|
|
block_scale_b=self.w["wscale_swizzled"],
|
|
alpha=self.w["scale"] * self.w["wscale"],
|
|
out_dtype=attn_output.dtype,
|
|
)
|
|
|
|
|
|
if current_platform.is_cuda():
|
|
MODELS = [
|
|
(
|
|
"nvidia/Llama-4-Scout-17B-16E-Instruct-FP8",
|
|
TestAttentionFp8StaticQuantPatternModel,
|
|
),
|
|
(
|
|
"nvidia/Llama-4-Scout-17B-16E-Instruct-FP4",
|
|
TestAttentionNvfp4QuantPatternModel,
|
|
),
|
|
]
|
|
HEADS = [(64, 8), (40, 8)]
|
|
elif current_platform.is_rocm():
|
|
MODELS = [
|
|
("amd/Llama-3.1-8B-Instruct-FP8-KV", TestAttentionFp8StaticQuantPatternModel)
|
|
]
|
|
HEADS = [(32, 8), (40, 8)]
|
|
else:
|
|
MODELS = []
|
|
HEADS = []
|
|
|
|
|
|
@pytest.mark.parametrize("num_qo_heads, num_kv_heads", HEADS)
|
|
@pytest.mark.parametrize("head_size", [128])
|
|
@pytest.mark.parametrize(
|
|
"batch_size", [7, 256, 533] if current_platform.is_cuda() else [8]
|
|
)
|
|
@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float16])
|
|
@pytest.mark.parametrize("model_name, model_class", MODELS)
|
|
@pytest.mark.parametrize(
|
|
"backend",
|
|
[_Backend.FLASHINFER]
|
|
if current_platform.is_cuda()
|
|
else [_Backend.ROCM_AITER_UNIFIED_ATTN, _Backend.ROCM_ATTN, _Backend.TRITON_ATTN],
|
|
)
|
|
# TODO(boyuan): test inductor graph partition on rocm
|
|
@pytest.mark.parametrize(
|
|
"use_inductor_graph_partition",
|
|
[False] if current_platform.is_rocm() else [False, True],
|
|
)
|
|
@pytest.mark.skipif(
|
|
not current_platform.is_cuda_alike(), reason="Only test ROCm or CUDA"
|
|
)
|
|
@pytest.mark.skipif(not current_platform.supports_fp8(), reason="Need FP8")
|
|
@pytest.mark.skipif(
|
|
current_platform.is_cuda() and not current_platform.is_device_capability((10, 0)),
|
|
reason="On CUDA only test on SM100(Blackwell)",
|
|
)
|
|
@pytest.mark.skipif(
|
|
not current_platform.is_cuda_alike(), reason="Only test ROCm or CUDA"
|
|
)
|
|
def test_attention_quant_pattern(
|
|
num_qo_heads: int,
|
|
num_kv_heads: int,
|
|
head_size: int,
|
|
batch_size: int,
|
|
dtype: torch.dtype,
|
|
model_name: str,
|
|
model_class: type[AttentionQuantPatternModel],
|
|
backend: _Backend,
|
|
use_inductor_graph_partition: bool,
|
|
dist_init,
|
|
caplog_vllm,
|
|
):
|
|
"""Test AttentionStaticQuantPattern fusion pass"""
|
|
|
|
if use_inductor_graph_partition and not is_torch_equal_or_newer("2.9.0.dev"):
|
|
pytest.skip("inductor graph partition is only available in PyTorch 2.9+")
|
|
|
|
device = torch.device("cuda:0")
|
|
torch.manual_seed(42)
|
|
|
|
vllm_config = VllmConfig(
|
|
model_config=ModelConfig(
|
|
model=model_name,
|
|
max_model_len=2048,
|
|
dtype=dtype,
|
|
),
|
|
scheduler_config=SchedulerConfig(max_num_seqs=1024),
|
|
compilation_config=CompilationConfig(
|
|
level=CompilationLevel.PIECEWISE,
|
|
custom_ops=["+quant_fp8"],
|
|
use_inductor_graph_partition=use_inductor_graph_partition,
|
|
),
|
|
cache_config=CacheConfig(cache_dtype="fp8"),
|
|
)
|
|
|
|
# Create test inputs
|
|
q = torch.randn(batch_size, num_qo_heads * head_size, dtype=dtype, device=device)
|
|
k = torch.randn(batch_size, num_kv_heads * head_size, dtype=dtype, device=device)
|
|
v = torch.randn(batch_size, num_kv_heads * head_size, dtype=dtype, device=device)
|
|
|
|
# Mark first dimension as dynamic for realistic testing
|
|
torch._dynamo.mark_dynamic(q, 0)
|
|
torch._dynamo.mark_dynamic(k, 0)
|
|
torch._dynamo.mark_dynamic(v, 0)
|
|
|
|
# Run model directly without compilation and fusion
|
|
vllm_config_unfused = copy.deepcopy(vllm_config)
|
|
with (
|
|
set_current_vllm_config(vllm_config_unfused),
|
|
set_forward_context(attn_metadata=None, vllm_config=vllm_config_unfused),
|
|
global_force_attn_backend_context_manager(backend),
|
|
):
|
|
model_unfused = model_class(
|
|
num_qo_heads=num_qo_heads,
|
|
num_kv_heads=num_kv_heads,
|
|
head_size=head_size,
|
|
kv_cache_dtype=FP8_DTYPE,
|
|
device=device,
|
|
vllm_config=vllm_config_unfused,
|
|
)
|
|
model_unfused = model_unfused.to(device)
|
|
|
|
forward_ctx = get_forward_context()
|
|
forward_ctx.attn_metadata = model_unfused.build_attn_metadata(batch_size)
|
|
|
|
# Run model directly without compilation and fusion
|
|
result_unfused = model_unfused(q, k, v)
|
|
|
|
# Run model with attn fusion enabled
|
|
vllm_config.compilation_config.pass_config = PassConfig(
|
|
enable_attn_fusion=True, enable_noop=True
|
|
)
|
|
with (
|
|
set_current_vllm_config(vllm_config),
|
|
set_forward_context(attn_metadata=None, vllm_config=vllm_config),
|
|
global_force_attn_backend_context_manager(backend),
|
|
):
|
|
model_fused = model_class(
|
|
num_qo_heads=num_qo_heads,
|
|
num_kv_heads=num_kv_heads,
|
|
head_size=head_size,
|
|
kv_cache_dtype=FP8_DTYPE,
|
|
device=device,
|
|
vllm_config=vllm_config,
|
|
w=model_unfused.w,
|
|
)
|
|
model_fused = model_fused.to(device)
|
|
|
|
forward_ctx = get_forward_context()
|
|
forward_ctx.attn_metadata = model_fused.build_attn_metadata(batch_size)
|
|
|
|
# Create test backend with fusion passes enabled
|
|
noop_pass = NoOpEliminationPass(vllm_config)
|
|
attn_pass = LazyInitPass(AttnFusionPass, vllm_config)
|
|
cleanup_pass = PostCleanupPass(vllm_config)
|
|
|
|
test_backend = TestBackend(noop_pass, attn_pass, cleanup_pass)
|
|
|
|
# Compile model with fusion enabled
|
|
model_compiled = torch.compile(
|
|
model_fused, backend=test_backend, fullgraph=True
|
|
)
|
|
assert model_compiled.attn._o_scale_float is None
|
|
|
|
result_fused_1 = model_compiled(q, k, v)
|
|
|
|
if backend == _Backend.FLASHINFER:
|
|
# With the Flashinfer backend after the 1st round of the forward
|
|
# pass, output quant scale should be loaded into the attn layer's
|
|
# _o_scale_float, the 2nd round should reuse the loaded
|
|
# _o_scale_float
|
|
assert model_compiled.attn._o_scale_float is not None
|
|
result_fused_2 = model_compiled(q, k, v)
|
|
|
|
assert model_compiled.attn._o_scale_float is not None
|
|
|
|
torch.testing.assert_close(
|
|
result_unfused, result_fused_2, atol=1e-2, rtol=1e-2
|
|
)
|
|
|
|
# Check attn fusion support
|
|
quant_key = model_class.quant_key
|
|
attn_fusion_supported = [
|
|
layer.impl.fused_output_quant_supported(quant_key)
|
|
for key, layer in vllm_config.compilation_config.static_forward_context.items()
|
|
]
|
|
if any(attn_fusion_supported):
|
|
# Check quantization ops in the graph before and after fusion
|
|
test_backend.check_before_ops([QUANT_OPS[quant_key]], fully_replaced=True)
|
|
|
|
# access the underlying `AttnFusionPass` on the `LazyInitPass`
|
|
assert attn_pass.pass_.matched_count == sum(attn_fusion_supported)
|
|
|
|
# Check attention ops in the graph before and after fusion
|
|
attn_nodes_pre = list(find_op_nodes(ATTN_OP, test_backend.graph_pre_pass))
|
|
attn_nodes_post = list(find_op_nodes(ATTN_OP, test_backend.graph_post_pass))
|
|
|
|
assert len(attn_nodes_pre) > 0, "Should have attention nodes before fusion"
|
|
assert len(attn_nodes_pre) == len(attn_nodes_post), (
|
|
"Should have same number of attention nodes before and after fusion"
|
|
)
|
|
assert attn_nodes_pre[0].kwargs.get("output_scale") is None, (
|
|
"Attention should not have output_scale before fusion"
|
|
)
|
|
assert attn_nodes_post[0].kwargs.get("output_scale") is not None, (
|
|
"Attention should have output_scale after fusion"
|
|
)
|
|
|
|
assert attn_nodes_pre[0].kwargs.get("output_block_scale") is None, (
|
|
"Attention should not have output_block_scale before fusion"
|
|
)
|
|
if quant_key.dtype == FP8_DTYPE:
|
|
assert attn_nodes_post[0].kwargs.get("output_block_scale") is None, (
|
|
"Attention should not have output_block_scale after FP8 fusion"
|
|
)
|
|
elif quant_key.dtype == FP4_DTYPE:
|
|
assert attn_nodes_post[0].kwargs.get("output_block_scale") is not None, (
|
|
"Attention should have output_block_scale after FP4 fusion"
|
|
)
|
|
|
|
# Check that results are close
|
|
torch.testing.assert_close(result_unfused, result_fused_1, atol=1e-2, rtol=1e-2)
|