vllm/tests/entrypoints/openai/test_metrics.py
Cyrus Leung ad430a67ca
[Metrics] Log multi-modal cache stats and fix reset (#26285)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-10 01:45:55 -07:00

449 lines
15 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import asyncio
import subprocess
import sys
import tempfile
import time
from http import HTTPStatus
import openai
import pytest
import pytest_asyncio
import requests
from prometheus_client.parser import text_string_to_metric_families
from transformers import AutoTokenizer
from vllm import version
from ...utils import RemoteOpenAIServer
MODELS = {
"text": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"multimodal": "HuggingFaceTB/SmolVLM-256M-Instruct",
}
PREV_MINOR_VERSION = version._prev_minor_version()
@pytest.fixture(scope="module", params=list(MODELS.keys()))
def model_key(request):
yield request.param
@pytest.fixture(scope="module")
def default_server_args():
return [
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--max-model-len",
"1024",
"--enforce-eager",
"--max-num-seqs",
"128",
]
@pytest.fixture(
scope="module",
params=[
"",
"--enable-chunked-prefill",
"--disable-frontend-multiprocessing",
f"--show-hidden-metrics-for-version={PREV_MINOR_VERSION}",
],
)
def server(model_key, default_server_args, request):
if request.param:
default_server_args.append(request.param)
model_name = MODELS[model_key]
with RemoteOpenAIServer(model_name, default_server_args) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as cl:
yield cl
_PROMPT = "Hello my name is Robert and I love magic"
_IMAGE_URL = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
def _get_expected_values(num_requests: int, prompt_ids: list[int], max_tokens: int):
num_prompt_tokens = len(prompt_ids)
# {metric_family: [(suffix, expected_value)]}
return {
"vllm:time_to_first_token_seconds": [("_count", num_requests)],
"vllm:time_per_output_token_seconds": [
("_count", num_requests * (max_tokens - 1))
],
"vllm:e2e_request_latency_seconds": [("_count", num_requests)],
"vllm:request_queue_time_seconds": [("_count", num_requests)],
"vllm:request_inference_time_seconds": [("_count", num_requests)],
"vllm:request_prefill_time_seconds": [("_count", num_requests)],
"vllm:request_decode_time_seconds": [("_count", num_requests)],
"vllm:request_prompt_tokens": [
("_sum", num_requests * num_prompt_tokens),
("_count", num_requests),
],
"vllm:request_generation_tokens": [
("_sum", num_requests * max_tokens),
("_count", num_requests),
],
"vllm:request_params_n": [("_count", num_requests)],
"vllm:request_params_max_tokens": [
("_sum", num_requests * max_tokens),
("_count", num_requests),
],
"vllm:iteration_tokens_total": [
(
"_sum",
num_requests * (num_prompt_tokens + max_tokens),
),
("_count", num_requests * max_tokens),
],
"vllm:prompt_tokens": [("_total", num_requests * num_prompt_tokens)],
"vllm:generation_tokens": [("_total", num_requests * max_tokens)],
"vllm:request_success": [("_total", num_requests)],
}
@pytest.mark.asyncio
async def test_metrics_counts(
server: RemoteOpenAIServer,
client: openai.AsyncClient,
model_key: str,
):
if model_key == "multimodal":
pytest.skip("Unnecessary test")
model_name = MODELS[model_key]
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt_ids = tokenizer.encode(_PROMPT)
num_requests = 10
max_tokens = 10
for _ in range(num_requests):
# sending a request triggers the metrics to be logged.
await client.completions.create(
model=model_name,
prompt=prompt_ids,
max_tokens=max_tokens,
)
response = requests.get(server.url_for("metrics"))
print(response.text)
assert response.status_code == HTTPStatus.OK
# Loop over all expected metric_families
expected_values = _get_expected_values(num_requests, prompt_ids, max_tokens)
for metric_family, suffix_values_list in expected_values.items():
if metric_family not in EXPECTED_METRICS_V1 or (
not server.show_hidden_metrics
and metric_family in HIDDEN_DEPRECATED_METRICS
):
continue
found_metric = False
# Check to see if the metric_family is found in the prom endpoint.
for family in text_string_to_metric_families(response.text):
if family.name == metric_family:
found_metric = True
# Check that each suffix is found in the prom endpoint.
for suffix, expected_value in suffix_values_list:
metric_name_w_suffix = f"{metric_family}{suffix}"
found_suffix = False
for sample in family.samples:
if sample.name == metric_name_w_suffix:
found_suffix = True
# For each suffix, value sure the value matches
# what we expect.
assert sample.value == expected_value, (
f"{metric_name_w_suffix} expected value of "
f"{expected_value} did not match found value "
f"{sample.value}"
)
break
assert found_suffix, (
f"Did not find {metric_name_w_suffix} in prom endpoint"
)
break
assert found_metric, f"Did not find {metric_family} in prom endpoint"
EXPECTED_METRICS_V1 = [
"vllm:num_requests_running",
"vllm:num_requests_waiting",
"vllm:gpu_cache_usage_perc",
"vllm:gpu_prefix_cache_queries",
"vllm:gpu_prefix_cache_hits",
"vllm:kv_cache_usage_perc",
"vllm:prefix_cache_queries",
"vllm:prefix_cache_hits",
"vllm:num_preemptions_total",
"vllm:prompt_tokens_total",
"vllm:generation_tokens_total",
"vllm:iteration_tokens_total",
"vllm:cache_config_info",
"vllm:request_success_total",
"vllm:request_prompt_tokens_sum",
"vllm:request_prompt_tokens_bucket",
"vllm:request_prompt_tokens_count",
"vllm:request_generation_tokens_sum",
"vllm:request_generation_tokens_bucket",
"vllm:request_generation_tokens_count",
"vllm:request_params_n_sum",
"vllm:request_params_n_bucket",
"vllm:request_params_n_count",
"vllm:request_params_max_tokens_sum",
"vllm:request_params_max_tokens_bucket",
"vllm:request_params_max_tokens_count",
"vllm:time_per_output_token_seconds_sum",
"vllm:time_per_output_token_seconds_bucket",
"vllm:time_per_output_token_seconds_count",
"vllm:time_to_first_token_seconds_sum",
"vllm:time_to_first_token_seconds_bucket",
"vllm:time_to_first_token_seconds_count",
"vllm:inter_token_latency_seconds_sum",
"vllm:inter_token_latency_seconds_bucket",
"vllm:inter_token_latency_seconds_count",
"vllm:e2e_request_latency_seconds_sum",
"vllm:e2e_request_latency_seconds_bucket",
"vllm:e2e_request_latency_seconds_count",
"vllm:request_queue_time_seconds_sum",
"vllm:request_queue_time_seconds_bucket",
"vllm:request_queue_time_seconds_count",
"vllm:request_inference_time_seconds_sum",
"vllm:request_inference_time_seconds_bucket",
"vllm:request_inference_time_seconds_count",
"vllm:request_prefill_time_seconds_sum",
"vllm:request_prefill_time_seconds_bucket",
"vllm:request_prefill_time_seconds_count",
"vllm:request_decode_time_seconds_sum",
"vllm:request_decode_time_seconds_bucket",
"vllm:request_decode_time_seconds_count",
]
EXPECTED_METRICS_MM = [
"vllm:mm_cache_queries",
"vllm:mm_cache_hits",
]
HIDDEN_DEPRECATED_METRICS: list[str] = [
"vllm:gpu_cache_usage_perc",
"vllm:gpu_prefix_cache_queries",
"vllm:gpu_prefix_cache_hits",
"vllm:time_per_output_token_seconds_sum",
"vllm:time_per_output_token_seconds_bucket",
"vllm:time_per_output_token_seconds_count",
]
@pytest.mark.asyncio
async def test_metrics_exist(
server: RemoteOpenAIServer,
client: openai.AsyncClient,
model_key: str,
):
model_name = MODELS[model_key]
# sending a request triggers the metrics to be logged.
if model_key == "text":
await client.completions.create(
model=model_name,
prompt="Hello, my name is",
max_tokens=5,
temperature=0.0,
)
else:
await client.chat.completions.create(
model=model_name,
messages=[
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": _IMAGE_URL}},
{"type": "text", "text": "What's in this image?"},
],
}
],
max_tokens=5,
temperature=0.0,
)
response = requests.get(server.url_for("metrics"))
assert response.status_code == HTTPStatus.OK
expected_metrics = EXPECTED_METRICS_V1
if model_key == "multimodal":
# NOTE: Don't use in-place assignment
expected_metrics = expected_metrics + EXPECTED_METRICS_MM
for metric in expected_metrics:
if metric in HIDDEN_DEPRECATED_METRICS and not server.show_hidden_metrics:
continue
assert metric in response.text
@pytest.mark.asyncio
async def test_abort_metrics_reset(
server: RemoteOpenAIServer,
client: openai.AsyncClient,
model_key: str,
):
model_name = MODELS[model_key]
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt_ids = tokenizer.encode(_PROMPT)
running_requests, waiting_requests, kv_cache_usage = _get_running_metrics_from_api(
server,
)
# Expect no running requests or kvcache usage
assert running_requests == 0
assert waiting_requests == 0
assert kv_cache_usage == 0.0
# Start some long-running requests that we can abort
tasks = []
for _ in range(3):
task = asyncio.create_task(
client.completions.create(
model=model_name,
prompt=prompt_ids,
max_tokens=100, # Long generation to give time to abort
temperature=0.0,
)
)
tasks.append(task)
# Wait a bit for requests to start processing
await asyncio.sleep(0.5)
# Check that we have running requests
running_requests, waiting_requests, kv_cache_usage = _get_running_metrics_from_api(
server,
)
# Expect running requests and kvcache usage
assert running_requests > 0
assert kv_cache_usage > 0
# Cancel all tasks to abort the requests
for task in tasks:
task.cancel()
# Wait for cancellations to be processed
await asyncio.sleep(1.0)
# Check that metrics have reset to zero
response = requests.get(server.url_for("metrics"))
assert response.status_code == HTTPStatus.OK
# Verify running and waiting requests counts and KV cache usage are zero
running_requests_after, waiting_requests_after, kv_cache_usage_after = (
_get_running_metrics_from_api(server)
)
assert running_requests_after == 0, (
f"Expected 0 running requests after abort, got {running_requests_after}"
)
assert waiting_requests_after == 0, (
f"Expected 0 waiting requests after abort, got {waiting_requests_after}"
)
assert kv_cache_usage_after == 0, (
f"Expected 0% KV cache usage after abort, got {kv_cache_usage_after}"
)
def _get_running_metrics_from_api(server: RemoteOpenAIServer):
"""Return (running_count, waiting_count, kv_cache_usage)"""
response = requests.get(server.url_for("metrics"))
assert response.status_code == HTTPStatus.OK
# Verify running and waiting requests counts and KV cache usage are zero
running_requests, waiting_requests, kv_cache_usage = None, None, None
kv_cache_usage_metric = "vllm:kv_cache_usage_perc"
for family in text_string_to_metric_families(response.text):
if family.name == "vllm:num_requests_running":
for sample in family.samples:
if sample.name == "vllm:num_requests_running":
running_requests = sample.value
break
elif family.name == "vllm:num_requests_waiting":
for sample in family.samples:
if sample.name == "vllm:num_requests_waiting":
waiting_requests = sample.value
break
elif family.name == kv_cache_usage_metric:
for sample in family.samples:
if sample.name == kv_cache_usage_metric:
kv_cache_usage = sample.value
break
assert running_requests is not None
assert waiting_requests is not None
assert kv_cache_usage is not None
return running_requests, waiting_requests, kv_cache_usage
def test_metrics_exist_run_batch():
input_batch = """{"custom_id": "request-0", "method": "POST", "url": "/v1/embeddings", "body": {"model": "intfloat/multilingual-e5-small", "input": "You are a helpful assistant."}}""" # noqa: E501
base_url = "0.0.0.0"
port = "8001"
server_url = f"http://{base_url}:{port}"
with (
tempfile.NamedTemporaryFile("w") as input_file,
tempfile.NamedTemporaryFile("r") as output_file,
):
input_file.write(input_batch)
input_file.flush()
proc = subprocess.Popen(
[
sys.executable,
"-m",
"vllm.entrypoints.openai.run_batch",
"-i",
input_file.name,
"-o",
output_file.name,
"--model",
"intfloat/multilingual-e5-small",
"--enable-metrics",
"--url",
base_url,
"--port",
port,
],
)
def is_server_up(url):
try:
response = requests.get(url)
return response.status_code == 200
except requests.ConnectionError:
return False
while not is_server_up(server_url):
time.sleep(1)
response = requests.get(server_url + "/metrics")
assert response.status_code == HTTPStatus.OK
proc.wait()