mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-18 19:35:01 +08:00
Signed-off-by: David Ben-David <davidb@pliops.com> Co-authored-by: David Ben-David <davidb@pliops.com> Signed-off-by: yewentao256 <zhyanwentao@126.com>
169 lines
6.2 KiB
Python
169 lines
6.2 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from __future__ import annotations
|
|
|
|
from dataclasses import dataclass
|
|
from typing import TYPE_CHECKING, Optional
|
|
|
|
from vllm._bc_linter import bc_linter_include
|
|
|
|
if TYPE_CHECKING:
|
|
import numpy as np
|
|
import numpy.typing as npt
|
|
import torch
|
|
|
|
from vllm.distributed.kv_transfer.kv_connector.v1.base import (
|
|
KVConnectorMetadata)
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.multimodal.inputs import MultiModalFeatureSpec
|
|
from vllm.pooling_params import PoolingParams
|
|
from vllm.sampling_params import SamplingParams
|
|
from vllm.v1.request import Request
|
|
|
|
|
|
@bc_linter_include
|
|
@dataclass
|
|
class NewRequestData:
|
|
|
|
req_id: str
|
|
prompt_token_ids: Optional[list[int]]
|
|
mm_features: list[MultiModalFeatureSpec]
|
|
sampling_params: Optional[SamplingParams]
|
|
pooling_params: Optional[PoolingParams]
|
|
block_ids: tuple[list[int], ...]
|
|
num_computed_tokens: int
|
|
lora_request: Optional[LoRARequest]
|
|
prompt_embeds: Optional[torch.Tensor] = None
|
|
|
|
@classmethod
|
|
def from_request(
|
|
cls,
|
|
request: Request,
|
|
block_ids: tuple[list[int], ...],
|
|
) -> NewRequestData:
|
|
return cls(
|
|
req_id=request.request_id,
|
|
prompt_token_ids=request.prompt_token_ids,
|
|
mm_features=request.mm_features,
|
|
sampling_params=request.sampling_params,
|
|
pooling_params=request.pooling_params,
|
|
block_ids=block_ids,
|
|
num_computed_tokens=request.num_computed_tokens,
|
|
lora_request=request.lora_request,
|
|
prompt_embeds=request.prompt_embeds,
|
|
)
|
|
|
|
def __repr__(self) -> str:
|
|
prompt_embeds_shape = (self.prompt_embeds.shape
|
|
if self.prompt_embeds else None)
|
|
return (f"NewRequestData("
|
|
f"req_id={self.req_id},"
|
|
f"prompt_token_ids={self.prompt_token_ids},"
|
|
f"mm_features={self.mm_features},"
|
|
f"sampling_params={self.sampling_params},"
|
|
f"block_ids={self.block_ids},"
|
|
f"num_computed_tokens={self.num_computed_tokens},"
|
|
f"lora_request={self.lora_request},"
|
|
f"prompt_embeds_shape={prompt_embeds_shape}"
|
|
")")
|
|
|
|
# Version of __repr__ with the prompt data obfuscated
|
|
def anon_repr(self) -> str:
|
|
prompt_token_ids_len = len(
|
|
self.prompt_token_ids
|
|
) if self.prompt_token_ids is not None else None
|
|
prompt_embeds_shape = (self.prompt_embeds.shape
|
|
if self.prompt_embeds else None)
|
|
return (f"NewRequestData("
|
|
f"req_id={self.req_id},"
|
|
f"prompt_token_ids_len={prompt_token_ids_len},"
|
|
f"mm_features={self.mm_features},"
|
|
f"sampling_params={self.sampling_params},"
|
|
f"block_ids={self.block_ids},"
|
|
f"num_computed_tokens={self.num_computed_tokens},"
|
|
f"lora_request={self.lora_request},"
|
|
f"prompt_embeds_shape={prompt_embeds_shape}"
|
|
")")
|
|
|
|
|
|
@bc_linter_include
|
|
@dataclass
|
|
class CachedRequestData:
|
|
|
|
req_ids: list[str]
|
|
# If resumed_from_preemption is False, new_block_ids will be appended to
|
|
# the request's block IDs. If True, new_block_ids will be used as the
|
|
# request's block IDs instead of appending to the existing block IDs.
|
|
resumed_from_preemption: list[bool]
|
|
# NOTE(woosuk): new_token_ids is only used for pipeline parallelism.
|
|
# When PP is not used, new_token_ids will be empty.
|
|
new_token_ids: list[list[int]]
|
|
new_block_ids: list[Optional[tuple[list[int], ...]]]
|
|
num_computed_tokens: list[int]
|
|
num_output_tokens: list[int]
|
|
|
|
@property
|
|
def num_reqs(self) -> int:
|
|
return len(self.req_ids)
|
|
|
|
@classmethod
|
|
def make_empty(cls) -> CachedRequestData:
|
|
return cls(
|
|
req_ids=[],
|
|
resumed_from_preemption=[],
|
|
new_token_ids=[],
|
|
new_block_ids=[],
|
|
num_computed_tokens=[],
|
|
num_output_tokens=[],
|
|
)
|
|
|
|
|
|
@bc_linter_include
|
|
@dataclass
|
|
class SchedulerOutput:
|
|
|
|
# list of the requests that are scheduled for the first time.
|
|
# We cache the request's data in each worker process, so that we don't
|
|
# need to re-send it every scheduling step.
|
|
scheduled_new_reqs: list[NewRequestData]
|
|
# list of the requests that have been scheduled before.
|
|
# Since the request's data is already cached in the worker processes,
|
|
# we only send the diff to minimize the communication cost.
|
|
scheduled_cached_reqs: CachedRequestData
|
|
|
|
# req_id -> num_scheduled_tokens
|
|
# Number of tokens scheduled for each request.
|
|
num_scheduled_tokens: dict[str, int]
|
|
# Total number of tokens scheduled for all requests.
|
|
# Equal to sum(num_scheduled_tokens.values())
|
|
total_num_scheduled_tokens: int
|
|
# req_id -> spec_token_ids
|
|
# If a request does not have any spec decode tokens, it will not be
|
|
# included in the dictionary.
|
|
scheduled_spec_decode_tokens: dict[str, list[int]]
|
|
# req_id -> encoder input indices that need processing.
|
|
# E.g., if a request has [0, 1], it could mean the vision encoder needs
|
|
# to process that the request's 0-th and 1-th images in the current step.
|
|
scheduled_encoder_inputs: dict[str, list[int]]
|
|
# Number of common prefix blocks for all requests in each KV cache group.
|
|
# This can be used for cascade attention.
|
|
num_common_prefix_blocks: list[int]
|
|
|
|
# Request IDs that are finished in between the previous and the current
|
|
# steps. This is used to notify the workers about the finished requests
|
|
# so that they can free the cached states for those requests.
|
|
finished_req_ids: set[str]
|
|
# list of mm_hash strings associated with the encoder outputs to be
|
|
# freed from the encoder cache.
|
|
free_encoder_mm_hashes: list[str]
|
|
|
|
# Dict of request ids to their index within the batch
|
|
# for filling the next token bitmask
|
|
structured_output_request_ids: dict[str, int]
|
|
# the bitmask for the whole batch
|
|
grammar_bitmask: Optional[npt.NDArray[np.int32]]
|
|
|
|
# KV Cache Connector metadata.
|
|
kv_connector_metadata: Optional[KVConnectorMetadata] = None
|