mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 10:30:37 +08:00
142 lines
4.7 KiB
Python
142 lines
4.7 KiB
Python
# Adapted from
|
|
# https://huggingface.co/Qwen/Qwen2.5-Math-RM-72B/blob/main/modeling_qwen2_rm.py
|
|
# Copyright 2024 The Qwen team.
|
|
# Copyright 2023 The vLLM team.
|
|
"""Inference-only Qwen2-RM model compatible with HuggingFace weights."""
|
|
from typing import Iterable, List, Optional, Set, Tuple, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from vllm.attention import AttentionMetadata
|
|
from vllm.config import VllmConfig
|
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.pooler import Pooler, PoolingType, SimplePooler
|
|
from vllm.model_executor.pooling_metadata import PoolingMetadata
|
|
from vllm.sequence import IntermediateTensors, PoolerOutput
|
|
|
|
from .interfaces import SupportsLoRA, SupportsPP
|
|
from .qwen2 import Qwen2Model
|
|
from .utils import AutoWeightsLoader, maybe_prefix
|
|
|
|
|
|
class ReLU(nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.activation = nn.ReLU()
|
|
|
|
def forward(self, input):
|
|
input, _ = input
|
|
return self.activation(input)
|
|
|
|
|
|
class Qwen2RewardBaseModel(nn.Module, SupportsLoRA, SupportsPP):
|
|
packed_modules_mapping = {
|
|
"qkv_proj": [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
],
|
|
"gate_up_proj": [
|
|
"gate_proj",
|
|
"up_proj",
|
|
],
|
|
}
|
|
|
|
# LoRA specific attributes
|
|
supported_lora_modules = [
|
|
"qkv_proj",
|
|
"o_proj",
|
|
"gate_up_proj",
|
|
"down_proj",
|
|
]
|
|
embedding_modules = {}
|
|
embedding_padding_modules = []
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
lora_config = vllm_config.lora_config
|
|
|
|
self.config = config
|
|
self.lora_config = lora_config
|
|
|
|
self.quant_config = quant_config
|
|
self.model = Qwen2Model(vllm_config=vllm_config,
|
|
prefix=maybe_prefix(prefix, "model"))
|
|
|
|
self.score = nn.Sequential(
|
|
ColumnParallelLinear(config.hidden_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config),
|
|
ReLU(),
|
|
RowParallelLinear(config.hidden_size,
|
|
config.num_labels,
|
|
quant_config=quant_config),
|
|
)
|
|
self._pooler: SimplePooler
|
|
self.make_empty_intermediate_tensors = (
|
|
self.model.make_empty_intermediate_tensors)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.get_input_embeddings(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
hidden_states = self.model(input_ids, positions, kv_caches,
|
|
attn_metadata, intermediate_tensors,
|
|
inputs_embeds)
|
|
logits, _ = self.score(hidden_states)
|
|
return logits
|
|
|
|
def pooler(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
pooling_metadata: PoolingMetadata,
|
|
) -> Optional[PoolerOutput]:
|
|
return self._pooler(hidden_states, pooling_metadata)
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str,
|
|
torch.Tensor]]) -> Set[str]:
|
|
loader = AutoWeightsLoader(self,
|
|
ignore_unexpected_prefixes=["lm_head."])
|
|
return loader.load_weights(weights)
|
|
|
|
|
|
class Qwen2ForRewardModel(Qwen2RewardBaseModel):
|
|
|
|
def __init__(self, *, vllm_config, prefix=""):
|
|
vllm_config.model_config.hf_config.num_labels = 1
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
|
pooler_config = vllm_config.model_config.pooler_config
|
|
self._pooler = Pooler.from_config_with_defaults(
|
|
pooler_config,
|
|
pooling_type=PoolingType.ALL,
|
|
normalize=False,
|
|
softmax=False)
|
|
|
|
|
|
class Qwen2ForProcessRewardModel(Qwen2RewardBaseModel):
|
|
|
|
def __init__(self, *, vllm_config, prefix=""):
|
|
vllm_config.model_config.hf_config.num_labels = 2
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
|
pooler_config = vllm_config.model_config.pooler_config
|
|
self._pooler = Pooler.from_config_with_defaults(
|
|
pooler_config,
|
|
pooling_type=PoolingType.STEP,
|
|
normalize=False,
|
|
softmax=True,
|
|
step_tag_id=151651,
|
|
)
|