mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-20 08:45:01 +08:00
278 lines
11 KiB
Python
278 lines
11 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
from typing import Iterable, Optional, Set, Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import PretrainedConfig
|
|
|
|
from vllm.config import CacheConfig, ModelConfig, VllmConfig
|
|
from vllm.model_executor.layers.fused_moe import FusedMoE
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead, VocabParallelEmbedding)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .deepseek_v2 import (DeepseekV2DecoderLayer,
|
|
get_spec_layer_idx_from_weight_name)
|
|
from .utils import maybe_prefix
|
|
|
|
|
|
class SharedHead(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.head = ParallelLMHead(config.vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
return self.norm(hidden_states)
|
|
|
|
|
|
class DeepSeekMultiTokenPredictorLayer(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
prefix: str,
|
|
model_config: ModelConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
)
|
|
|
|
self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.eh_proj = nn.Linear(config.hidden_size * 2,
|
|
config.hidden_size,
|
|
bias=False)
|
|
self.shared_head = SharedHead(config=config, quant_config=quant_config)
|
|
self.mtp_block = DeepseekV2DecoderLayer(config, prefix, model_config,
|
|
cache_config, quant_config)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
previous_hidden_states: torch.Tensor,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
spec_step_index: int = 0,
|
|
) -> torch.Tensor:
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
assert inputs_embeds is not None
|
|
# masking inputs at position 0, as not needed by MTP
|
|
inputs_embeds[positions == 0] = 0
|
|
inputs_embeds = self.enorm(inputs_embeds)
|
|
previous_hidden_states = self.hnorm(previous_hidden_states)
|
|
|
|
hidden_states = self.eh_proj(
|
|
torch.cat([inputs_embeds, previous_hidden_states], dim=-1))
|
|
|
|
hidden_states, residual = self.mtp_block(positions=positions,
|
|
hidden_states=hidden_states,
|
|
residual=None)
|
|
hidden_states = residual + hidden_states
|
|
return hidden_states
|
|
|
|
|
|
class DeepSeekMultiTokenPredictor(nn.Module):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
self.mtp_start_layer_idx = config.num_hidden_layers
|
|
self.num_mtp_layers = config.num_nextn_predict_layers
|
|
# to map the exact layer index from weights
|
|
self.layers = torch.nn.ModuleDict({
|
|
str(idx):
|
|
DeepSeekMultiTokenPredictorLayer(
|
|
config,
|
|
f"{prefix}.layers.{idx}",
|
|
model_config=vllm_config.model_config,
|
|
cache_config=vllm_config.cache_config,
|
|
quant_config=vllm_config.quant_config,
|
|
)
|
|
for idx in range(self.mtp_start_layer_idx,
|
|
self.mtp_start_layer_idx + self.num_mtp_layers)
|
|
})
|
|
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
previous_hidden_states: torch.Tensor,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
spec_step_idx: int = 0,
|
|
) -> torch.Tensor:
|
|
current_step_idx = (spec_step_idx % self.num_mtp_layers)
|
|
return self.layers[str(self.mtp_start_layer_idx + current_step_idx)](
|
|
input_ids,
|
|
positions,
|
|
previous_hidden_states,
|
|
inputs_embeds,
|
|
current_step_idx,
|
|
)
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
spec_step_idx: int = 0,
|
|
) -> torch.Tensor:
|
|
current_step_idx = (spec_step_idx % self.num_mtp_layers)
|
|
mtp_layer = self.layers[str(self.mtp_start_layer_idx +
|
|
current_step_idx)]
|
|
logits = self.logits_processor(mtp_layer.shared_head.head,
|
|
mtp_layer.shared_head(hidden_states),
|
|
sampling_metadata)
|
|
return logits
|
|
|
|
|
|
class DeepSeekMTP(nn.Module):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
self.config = vllm_config.model_config.hf_config
|
|
self.model = DeepSeekMultiTokenPredictor(vllm_config=vllm_config,
|
|
prefix=maybe_prefix(
|
|
prefix, "model"))
|
|
|
|
self.sampler = get_sampler()
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
previous_hidden_states: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
spec_step_idx: int = 0,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.model(input_ids, positions,
|
|
previous_hidden_states, inputs_embeds,
|
|
spec_step_idx)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
spec_step_idx: int = 0,
|
|
) -> Optional[torch.Tensor]:
|
|
return self.model.compute_logits(hidden_states, sampling_metadata,
|
|
spec_step_idx)
|
|
|
|
def sample(
|
|
self,
|
|
logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[SamplerOutput]:
|
|
next_tokens = self.sampler(logits, sampling_metadata)
|
|
return next_tokens
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str,
|
|
torch.Tensor]]) -> Set[str]:
|
|
stacked_params_mapping = [
|
|
("gate_up_proj", "gate_proj", 0),
|
|
("gate_up_proj", "up_proj", 1),
|
|
]
|
|
|
|
expert_params_mapping = FusedMoE.make_expert_params_mapping(
|
|
ckpt_gate_proj_name="gate_proj",
|
|
ckpt_down_proj_name="down_proj",
|
|
ckpt_up_proj_name="up_proj",
|
|
num_experts=self.config.n_routed_experts)
|
|
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: Set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
|
|
if spec_layer is None:
|
|
continue
|
|
name = self._rewrite_spec_layer_name(spec_layer, name)
|
|
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
|
# Skip non-stacked layers and experts (experts handled below).
|
|
if weight_name not in name:
|
|
continue
|
|
# We have mlp.experts[0].gate_proj in the checkpoint.
|
|
# Since we handle the experts below in expert_params_mapping,
|
|
# we need to skip here BEFORE we update the name, otherwise
|
|
# name will be updated to mlp.experts[0].gate_up_proj, which
|
|
# will then be updated below in expert_params_mapping
|
|
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
|
|
if (("mlp.experts." in name) and name not in params_dict):
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
for mapping in expert_params_mapping:
|
|
param_name, weight_name, expert_id, shard_id = mapping
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param,
|
|
loaded_weight,
|
|
name,
|
|
shard_id=shard_id,
|
|
expert_id=expert_id)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
def _rewrite_spec_layer_name(self, spec_layer: int, name: str) -> str:
|
|
"""
|
|
Rewrite the weight name to match the format of the original model.
|
|
Add .mtp_block for modules in transformer layer block for spec layer
|
|
"""
|
|
spec_layer_weight_names = [
|
|
"embed_tokens", "enorm", "hnorm", "eh_proj", "shared_head"
|
|
]
|
|
spec_layer_weight = False
|
|
for weight_name in spec_layer_weight_names:
|
|
if weight_name in name:
|
|
spec_layer_weight = True
|
|
break
|
|
if not spec_layer_weight:
|
|
# treat rest weights as weights for transformer layer block
|
|
name = name.replace(f"model.layers.{spec_layer}.",
|
|
f"model.layers.{spec_layer}.mtp_block.")
|
|
return name
|