mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-14 19:15:01 +08:00
338 lines
10 KiB
Python
338 lines
10 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""Tests for attention backend selectors."""
|
|
|
|
from unittest.mock import MagicMock, patch
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from vllm.attention.backends.registry import AttentionBackendEnum
|
|
from vllm.platforms import current_platform
|
|
|
|
# ROCm-specific attention backend selection tests
|
|
pytestmark = pytest.mark.skipif(
|
|
not current_platform.is_rocm(), reason="ROCm-specific tests"
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_vllm_config():
|
|
"""Create a mock VllmConfig for testing."""
|
|
config = MagicMock()
|
|
config.model_config.dtype = torch.float16
|
|
config.model_config.hf_config.architectures = ["LlamaForCausalLM"]
|
|
config.cache_config.block_size = 16
|
|
return config
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_on_gfx9():
|
|
"""Mock the on_gfx9 function to return True."""
|
|
with patch("vllm.platforms.rocm.on_gfx9", return_value=True):
|
|
yield
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"env_vars, selected_backend, expected_backend_path",
|
|
[
|
|
# Test Case 1: Default (no env vars, no explicit backend)
|
|
(
|
|
{},
|
|
None,
|
|
AttentionBackendEnum.TRITON_ATTN.get_path(),
|
|
),
|
|
# Test Case 2: Explicit TRITON_ATTN backend
|
|
(
|
|
{},
|
|
"TRITON_ATTN",
|
|
AttentionBackendEnum.TRITON_ATTN.get_path(),
|
|
),
|
|
# Test Case 3: Explicit ROCM_ATTN backend
|
|
(
|
|
{},
|
|
"ROCM_ATTN",
|
|
AttentionBackendEnum.ROCM_ATTN.get_path(),
|
|
),
|
|
# Test Case 4: Explicit ROCM_AITER_FA backend
|
|
(
|
|
{},
|
|
"ROCM_AITER_FA",
|
|
AttentionBackendEnum.ROCM_AITER_FA.get_path(),
|
|
),
|
|
# Test Case 5: Explicit ROCM_AITER_UNIFIED_ATTN backend
|
|
(
|
|
{},
|
|
"ROCM_AITER_UNIFIED_ATTN",
|
|
AttentionBackendEnum.ROCM_AITER_UNIFIED_ATTN.get_path(),
|
|
),
|
|
# Test Case 6: VLLM_ROCM_USE_AITER=1
|
|
# (defaults to AITER FA when MHA not explicitly disabled)
|
|
(
|
|
{"VLLM_ROCM_USE_AITER": "1"},
|
|
None,
|
|
AttentionBackendEnum.ROCM_AITER_FA.get_path(),
|
|
),
|
|
# Test Case 7: VLLM_ROCM_USE_AITER=1 + VLLM_ROCM_USE_AITER_MHA=1
|
|
(
|
|
{"VLLM_ROCM_USE_AITER": "1", "VLLM_ROCM_USE_AITER_MHA": "1"},
|
|
None,
|
|
AttentionBackendEnum.ROCM_AITER_FA.get_path(),
|
|
),
|
|
# Test Case 8: VLLM_ROCM_USE_AITER=1 + VLLM_ROCM_USE_AITER_UNIFIED_ATTENTION=1
|
|
(
|
|
{
|
|
"VLLM_ROCM_USE_AITER": "1",
|
|
"VLLM_ROCM_USE_AITER_UNIFIED_ATTENTION": "1",
|
|
},
|
|
None,
|
|
AttentionBackendEnum.ROCM_AITER_UNIFIED_ATTN.get_path(),
|
|
),
|
|
# Test Case 9: VLLM_V1_USE_PREFILL_DECODE_ATTENTION=1
|
|
(
|
|
{"VLLM_V1_USE_PREFILL_DECODE_ATTENTION": "1"},
|
|
None,
|
|
AttentionBackendEnum.ROCM_ATTN.get_path(),
|
|
),
|
|
# Test Case 10: VLLM_ROCM_USE_AITER=1 + explicit TRITON_ATTN
|
|
(
|
|
{"VLLM_ROCM_USE_AITER": "1"},
|
|
"TRITON_ATTN",
|
|
AttentionBackendEnum.TRITON_ATTN.get_path(),
|
|
),
|
|
# Test Case 11: VLLM_ROCM_USE_AITER=1 + VLLM_ROCM_USE_AITER_MHA=0
|
|
# (explicitly disabled)
|
|
(
|
|
{"VLLM_ROCM_USE_AITER": "1", "VLLM_ROCM_USE_AITER_MHA": "0"},
|
|
None,
|
|
AttentionBackendEnum.TRITON_ATTN.get_path(),
|
|
),
|
|
# Test Case 12: VLLM_ROCM_USE_AITER=1 + explicit ROCM_ATTN
|
|
(
|
|
{"VLLM_ROCM_USE_AITER": "1"},
|
|
"ROCM_ATTN",
|
|
AttentionBackendEnum.ROCM_ATTN.get_path(),
|
|
),
|
|
],
|
|
)
|
|
def test_standard_attention_backend_selection(
|
|
env_vars,
|
|
selected_backend,
|
|
expected_backend_path,
|
|
mock_vllm_config,
|
|
mock_on_gfx9,
|
|
monkeypatch,
|
|
):
|
|
"""Test standard attention backend selection with various configurations."""
|
|
# Set environment variables
|
|
for key, value in env_vars.items():
|
|
monkeypatch.setenv(key, value)
|
|
|
|
# Import after setting env vars to ensure they're picked up
|
|
# Reload envs to pick up new environment variables
|
|
import importlib
|
|
|
|
import vllm.envs as envs
|
|
from vllm.attention.backends.registry import _Backend
|
|
|
|
importlib.reload(envs)
|
|
|
|
# Convert string backend to enum if provided
|
|
backend_enum = None
|
|
if selected_backend:
|
|
backend_enum = getattr(_Backend, selected_backend)
|
|
|
|
# Get the backend class path
|
|
from vllm.platforms.rocm import RocmPlatform
|
|
|
|
backend_path = RocmPlatform.get_attn_backend_cls(
|
|
selected_backend=backend_enum,
|
|
head_size=128,
|
|
dtype=torch.float16,
|
|
kv_cache_dtype="auto",
|
|
block_size=16,
|
|
use_mla=False,
|
|
has_sink=False,
|
|
use_sparse=False,
|
|
)
|
|
assert backend_path == expected_backend_path
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"env_vars, selected_backend, block_size, expected_backend_path, should_raise",
|
|
[
|
|
# Test Case 1: TRITON_MLA with block_size != 1
|
|
(
|
|
{},
|
|
"TRITON_MLA",
|
|
16,
|
|
AttentionBackendEnum.TRITON_MLA.get_path(),
|
|
False,
|
|
),
|
|
# Test Case 2: TRITON_MLA with block_size == 1 (should raise)
|
|
(
|
|
{},
|
|
"TRITON_MLA",
|
|
1,
|
|
None,
|
|
True,
|
|
),
|
|
# Test Case 3: ROCM_AITER_MLA with block_size == 1
|
|
(
|
|
{},
|
|
"ROCM_AITER_MLA",
|
|
1,
|
|
AttentionBackendEnum.ROCM_AITER_MLA.get_path(),
|
|
False,
|
|
),
|
|
# Test Case 4: ROCM_AITER_MLA with block_size != 1 (should raise)
|
|
(
|
|
{},
|
|
"ROCM_AITER_MLA",
|
|
16,
|
|
AttentionBackendEnum.ROCM_AITER_MLA.get_path(),
|
|
False,
|
|
),
|
|
# Test Case 5: VLLM_ROCM_USE_AITER=1 with block_size == 1
|
|
(
|
|
{"VLLM_ROCM_USE_AITER": "1"},
|
|
None,
|
|
1,
|
|
AttentionBackendEnum.ROCM_AITER_MLA.get_path(),
|
|
False,
|
|
),
|
|
# Test Case 6: VLLM_ROCM_USE_AITER=1 with block_size == 16
|
|
# (should use ROCM_AITER_MLA now, as it supports block_size 16)
|
|
(
|
|
{"VLLM_ROCM_USE_AITER": "1"},
|
|
None,
|
|
16,
|
|
AttentionBackendEnum.ROCM_AITER_MLA.get_path(),
|
|
False,
|
|
),
|
|
# Test Case 7: VLLM_ROCM_USE_AITER=1 + explicit TRITON_MLA
|
|
(
|
|
{"VLLM_ROCM_USE_AITER": "1"},
|
|
"TRITON_MLA",
|
|
16,
|
|
AttentionBackendEnum.TRITON_MLA.get_path(),
|
|
False,
|
|
),
|
|
# Test Case 8: Explicit ROCM_AITER_TRITON_MLA
|
|
(
|
|
{},
|
|
"ROCM_AITER_TRITON_MLA",
|
|
16,
|
|
AttentionBackendEnum.ROCM_AITER_TRITON_MLA.get_path(),
|
|
False,
|
|
),
|
|
],
|
|
)
|
|
def test_mla_backend_selection(
|
|
env_vars,
|
|
selected_backend,
|
|
block_size,
|
|
expected_backend_path,
|
|
should_raise,
|
|
mock_vllm_config,
|
|
monkeypatch,
|
|
):
|
|
"""Test MLA backend selection with various configurations."""
|
|
# Set environment variables
|
|
for key, value in env_vars.items():
|
|
monkeypatch.setenv(key, value)
|
|
|
|
# Import after setting env vars
|
|
# Reload envs
|
|
import importlib
|
|
|
|
import vllm.envs as envs
|
|
from vllm.attention.backends.registry import _Backend
|
|
|
|
importlib.reload(envs)
|
|
|
|
# Mock is_aiter_mla_enabled based on env vars and block_size
|
|
aiter_enabled = env_vars.get("VLLM_ROCM_USE_AITER") == "1"
|
|
|
|
mock_rocm_ops = MagicMock()
|
|
mock_rocm_ops.is_mla_enabled.return_value = aiter_enabled
|
|
mock_aiter_module = MagicMock()
|
|
mock_aiter_module.rocm_aiter_ops = mock_rocm_ops
|
|
|
|
with patch.dict("sys.modules", {"vllm._aiter_ops": mock_aiter_module}):
|
|
# Convert string backend to enum if provided
|
|
backend_enum = None
|
|
if selected_backend:
|
|
backend_enum = getattr(_Backend, selected_backend)
|
|
|
|
from vllm.platforms.rocm import RocmPlatform
|
|
|
|
if should_raise:
|
|
with pytest.raises(ValueError):
|
|
RocmPlatform.get_attn_backend_cls(
|
|
selected_backend=backend_enum,
|
|
head_size=128,
|
|
dtype=torch.float16,
|
|
kv_cache_dtype="auto",
|
|
block_size=block_size,
|
|
use_mla=True,
|
|
has_sink=False,
|
|
use_sparse=False,
|
|
)
|
|
else:
|
|
backend_path = RocmPlatform.get_attn_backend_cls(
|
|
selected_backend=backend_enum,
|
|
head_size=128,
|
|
dtype=torch.float16,
|
|
kv_cache_dtype="auto",
|
|
block_size=block_size,
|
|
use_mla=True,
|
|
has_sink=False,
|
|
use_sparse=False,
|
|
)
|
|
assert backend_path == expected_backend_path
|
|
|
|
|
|
def test_aiter_fa_requires_gfx9(mock_vllm_config):
|
|
"""Test that ROCM_AITER_FA requires gfx9 architecture."""
|
|
from vllm.attention.backends.registry import _Backend
|
|
from vllm.platforms.rocm import RocmPlatform
|
|
|
|
# Mock on_gfx9 to return False
|
|
with (
|
|
patch("vllm.platforms.rocm.on_gfx9", return_value=False),
|
|
pytest.raises(
|
|
ValueError,
|
|
match="only supported on gfx9",
|
|
),
|
|
):
|
|
RocmPlatform.get_attn_backend_cls(
|
|
selected_backend=_Backend.ROCM_AITER_FA,
|
|
head_size=128,
|
|
dtype=torch.float16,
|
|
kv_cache_dtype="auto",
|
|
block_size=16,
|
|
use_mla=False,
|
|
has_sink=False,
|
|
use_sparse=False,
|
|
)
|
|
|
|
|
|
def test_sparse_not_supported(mock_vllm_config):
|
|
"""Test that sparse attention is not supported on ROCm."""
|
|
from vllm.platforms.rocm import RocmPlatform
|
|
|
|
with pytest.raises(
|
|
AssertionError, match="Sparse MLA backend on ROCm only supports block size 1"
|
|
):
|
|
RocmPlatform.get_attn_backend_cls(
|
|
selected_backend=None,
|
|
head_size=128,
|
|
dtype=torch.float16,
|
|
kv_cache_dtype="auto",
|
|
block_size=16,
|
|
use_mla=False,
|
|
has_sink=False,
|
|
use_sparse=True,
|
|
)
|