vllm/vllm/model_executor/models/aya_vision.py
Cyrus Leung 83b824c8b4
[VLM] Remove BaseProcessingInfo.get_mm_max_tokens_per_item (#16408)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-10 09:06:58 -07:00

477 lines
19 KiB
Python

# SPDX-License-Identifier: Apache-2.0 Adapted from
# https://github.com/huggingface/transformers/tree/main/src/transformers/models/aya_vision
from functools import cached_property
from typing import (Iterable, Literal, Mapping, Optional, Sequence, Set, Tuple,
TypedDict, Union, cast)
import torch
from torch import nn
from transformers import BatchFeature, GotOcr2ImageProcessor
from transformers.activations import ACT2FN
from transformers.image_processing_utils import get_size_dict
from transformers.models.aya_vision import AyaVisionConfig
from transformers.models.aya_vision.processing_aya_vision import (
AyaVisionProcessor)
from transformers.models.got_ocr2.image_processing_got_ocr2 import (
get_optimal_tiled_canvas)
from vllm.config import VllmConfig
from vllm.jsontree import json_map_leaves
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalKwargs
from vllm.multimodal.parse import (ImageProcessorItems, ImageSize,
MultiModalDataItems)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo,
MultiModalFieldConfig,
PromptReplacement, PromptUpdate,
PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.sequence import IntermediateTensors
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
from .siglip import SiglipVisionModel
from .utils import (AutoWeightsLoader, flatten_bn, init_vllm_registered_model,
maybe_prefix, merge_multimodal_embeddings)
class AyaVisionImagePixelInputs(TypedDict):
type: Literal["pixel_values"]
pixel_values: torch.Tensor
"""
Shape: `(num_patches_total, num_channels, height, width)`
`num_patches_total` is the total number of patches over each image over each
prompt in the batch.
"""
num_patches: torch.Tensor
"""Shape: `(batch_size * num_images)`"""
class AyaVisionMultiModalProjector(nn.Module):
def __init__(self, config: AyaVisionConfig):
super().__init__()
self.config = config
self.downsample_factor = config.downsample_factor
self.alignment_intermediate_size = getattr(
config, "alignment_intermediate_size",
config.text_config.hidden_size)
self.layernorm = nn.LayerNorm(config.vision_config.hidden_size *
(config.downsample_factor**2),
eps=config.adapter_layer_norm_eps)
self.linear_1 = nn.Linear(
config.vision_config.hidden_size * (config.downsample_factor**2),
self.alignment_intermediate_size,
bias=True,
)
self.act = ACT2FN["silu"] # SwiGLU uses SiLU activation
# For SwiGLU, project down to half size since we split intermediate dim
self.linear_2 = nn.Linear(self.alignment_intermediate_size // 2,
config.text_config.hidden_size,
bias=True)
def forward(self, image_features: torch.Tensor) -> torch.Tensor:
image_features = self.pixel_shuffle(image_features)
image_features = self.layernorm(image_features)
hidden_states = self.linear_1(image_features)
# Split along last dimension and apply SwiGLU
x, gate = hidden_states.chunk(2, dim=-1)
hidden_states = self.act(gate) * x
hidden_states = self.linear_2(hidden_states)
return hidden_states
def pixel_shuffle(self,
image_features: torch.Tensor) -> torch.Tensor: # B, S, D
batch_size, seq_length, _ = image_features.shape
height = width = int(seq_length**0.5)
image_features = image_features.reshape(image_features.shape[0], width,
height, -1)
channels = image_features.shape[-1]
image_features = image_features.reshape(
batch_size, width, int(height / self.downsample_factor),
int(channels * self.downsample_factor))
image_features = image_features.permute(0, 2, 1, 3)
image_features = image_features.reshape(
batch_size, int(height / self.downsample_factor),
int(width / self.downsample_factor), -1)
image_features = image_features.permute(0, 2, 1, 3)
return image_features
class AyaVisionProcessingInfo(BaseProcessingInfo):
def get_hf_config(self) -> AyaVisionConfig:
return self.ctx.get_hf_config(AyaVisionConfig)
def get_hf_processor(self, **kwargs: object) -> AyaVisionProcessor:
return self.ctx.get_hf_processor(AyaVisionProcessor, **kwargs)
def get_image_processor(self) -> GotOcr2ImageProcessor:
return self.get_hf_processor().image_processor
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
return {"image": None}
def get_image_size_with_most_features(self) -> ImageSize:
image_processor = self.get_image_processor()
height = image_processor.size['height']
width = image_processor.size['width']
max_patches = image_processor.max_patches
return ImageSize(height=height * max_patches,
width=width * max_patches)
def get_num_patches(self, *, image_width: int, image_height: int,
size: dict, min_patches: int, max_patches: int) -> int:
"""
Calculate the number of patches needed for a given image based on size
constraints. This method replicates and adjusts the logic from:
transformers/models/got_ocr2/image_processing_got_ocr2
"""
size = get_size_dict(size, default_to_square=False)
num_columns, num_rows = get_optimal_tiled_canvas(
(image_height, image_width), (size["height"], size["width"]),
min_patches, max_patches)
num_blocks = num_columns * num_rows
return num_blocks if num_blocks == 1 else num_blocks + 1
class AyaVisionDummyInputsBuilder(
BaseDummyInputsBuilder[AyaVisionProcessingInfo]):
def get_dummy_processor_inputs(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
processor = self.info.get_hf_processor()
image_token = processor.image_token
num_images = mm_counts.get("image", 0)
image_size = \
self.info.get_image_size_with_most_features()
mm_data = {
"image":
self._get_dummy_images(width=image_size.width,
height=image_size.height,
num_images=num_images)
}
return ProcessorInputs(
prompt_text=image_token * num_images,
mm_data=mm_data,
)
class AyaVisionMultiModalProcessor(
BaseMultiModalProcessor[AyaVisionProcessingInfo]):
def _call_hf_processor(
self,
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
) -> BatchFeature:
processed_outputs = super()._call_hf_processor(
prompt,
mm_data,
mm_kwargs,
)
hf_processor = self.info.get_hf_processor(**mm_kwargs)
image_processor = hf_processor.image_processor
# HF processor pops the `num_patches` kwarg, which is needed by vLLM
if (images :=
mm_data.get("images")) is not None and '<image>' in prompt:
assert isinstance(images, list)
parsed_images = (self._get_data_parser().parse_mm_data({
"image":
images
}).get_items("image", ImageProcessorItems))
image_sizes = [
parsed_images.get_image_size(i)
for i in range(len(parsed_images))
]
num_patches = [
self.info.get_num_patches(
image_width=image_size.width,
image_height=image_size.height,
size=image_processor.size,
min_patches=image_processor.min_patches,
max_patches=image_processor.max_patches)
for image_size in image_sizes
]
processed_outputs["num_patches"] = torch.tensor(num_patches)
return processed_outputs
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
num_patches = hf_inputs.get("num_patches", torch.empty(0))
return dict(
pixel_values=MultiModalFieldConfig.flat_from_sizes(
"image", num_patches),
num_patches=MultiModalFieldConfig.batched("image"),
image_embeds=MultiModalFieldConfig.batched("image"),
)
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
image_token = hf_processor.image_token
img_patch_token = hf_processor.img_patch_token
image_processor = hf_processor.image_processor
def get_replacement(item_idx: int):
images: ImageProcessorItems = mm_items.get("image",
ImageProcessorItems)
image_size: ImageSize = images.get_image_size(item_idx)
num_patches = self.info.get_num_patches(
image_width=image_size.width,
image_height=image_size.height,
size=image_processor.size,
min_patches=image_processor.min_patches,
max_patches=image_processor.max_patches,
)
repl = hf_processor._prompt_split_image(num_patches=num_patches)
return PromptUpdateDetails.select_text(repl, img_patch_token)
return [
PromptReplacement(
modality="image",
target=image_token,
replacement=get_replacement,
)
]
def _get_num_hidden_layers(hf_config: AyaVisionConfig) -> int:
feature_layers = hf_config.vision_feature_layer
num_hidden_layers = hf_config.vision_config.num_hidden_layers
# If we have one feature layer, initialize up to that layer
if isinstance(feature_layers, int):
return _get_layer_index(feature_layers, num_hidden_layers)
# If we have multiple feature layers, initialize up to the deepest m
elif isinstance(feature_layers, (list, tuple)):
return max(
_get_layer_index(idx, num_hidden_layers) for idx in feature_layers)
raise TypeError(f"vision_layer_feature type: {type(feature_layers)}"
" is not supported")
def _get_layer_index(feature_layer_index: int, num_hidden_layers: int) -> int:
if feature_layer_index < 0:
return num_hidden_layers + feature_layer_index + 1
return feature_layer_index
@MULTIMODAL_REGISTRY.register_processor(
AyaVisionMultiModalProcessor,
info=AyaVisionProcessingInfo,
dummy_inputs=AyaVisionDummyInputsBuilder)
class AyaVisionForConditionalGeneration(nn.Module, SupportsMultiModal,
SupportsPP):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config: AyaVisionConfig = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
num_hidden_layers = _get_num_hidden_layers(config)
self.config = config
self.quant_config = quant_config
self.multimodal_config = multimodal_config
self.vision_tower = SiglipVisionModel(
config.vision_config,
quant_config,
num_hidden_layers_override=num_hidden_layers,
prefix=maybe_prefix(prefix, "vision_model"))
self.vocab_size = config.text_config.vocab_size
self.multi_modal_projector = AyaVisionMultiModalProjector(config)
self.language_model = init_vllm_registered_model(
vllm_config=vllm_config,
hf_config=config.text_config,
prefix=maybe_prefix(prefix, "model"),
# Cohere2ForCausalLM and CohereForCausalLM are the same on vllm
architectures=["Cohere2ForCausalLM"])
@property
def dtype(self):
return next(self.parameters()).dtype
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights)
def _image_pixels_to_features(self, vision_tower: SiglipVisionModel,
pixel_values: torch.Tensor,
**kwargs) -> torch.Tensor:
target_dtype = vision_tower.get_input_embeddings().weight.dtype
image_features = vision_tower(pixel_values.to(dtype=target_dtype),
**kwargs)
def select_features(leaf: torch.Tensor):
return self._select_image_features(
leaf,
strategy=self.config.vision_feature_select_strategy,
)
return cast(
Union[torch.Tensor, tuple[torch.Tensor, ...]],
json_map_leaves(select_features, image_features),
)
def _select_image_features(self, image_features: torch.Tensor, *,
strategy: str) -> torch.Tensor:
if strategy == "default":
return image_features[:, 1:]
elif strategy == "full":
return image_features
raise ValueError(f"Unexpected select feature strategy: {strategy}")
def _process_image_input(self, image_input: AyaVisionImagePixelInputs,
**kwargs) -> list[torch.Tensor]:
assert self.vision_tower is not None
pixel_values = image_input["pixel_values"]
num_patches = image_input["num_patches"]
image_features = self._image_pixels_to_features(
self.vision_tower, pixel_values=pixel_values)
image_embeds = self.multi_modal_projector(image_features)
return [
e.flatten(0, 2) for e in image_embeds.split(num_patches.tolist())
]
def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor:
h = w = self.config.vision_config.image_size
expected_dims = (3, h, w)
def _validate_shape(d: torch.Tensor):
if d.shape != expected_dims:
raise ValueError(
"The expected shape of pixel values per image per batch "
f"is {expected_dims}. You supplied {tuple(d.shape)}.")
for d in data:
_validate_shape(d)
return data
def _parse_and_validate_image_input(
self, **kwargs: object) -> Optional[AyaVisionImagePixelInputs]:
pixel_values = kwargs.pop("pixel_values", None)
num_patches = kwargs.pop("num_patches", None)
image_embeds = kwargs.pop("image_embeds", None)
assert image_embeds is None, "Aya Vision does not support image_embeds."
if not isinstance(pixel_values, (torch.Tensor, list)):
raise ValueError("Incorrect type of pixel values. "
f"Got type: {type(pixel_values)}")
if num_patches is not None and not isinstance(num_patches,
(torch.Tensor, list)):
raise ValueError("Incorrect type of num_patches. "
f"Got type: {type(num_patches)}")
pixel_values = flatten_bn(pixel_values, concat=True)
num_patches = flatten_bn(num_patches, concat=True)
return AyaVisionImagePixelInputs(
type="pixel_values",
pixel_values=self._validate_pixel_values(pixel_values),
num_patches=num_patches,
)
def get_language_model(self) -> torch.nn.Module:
return self.language_model
def get_multimodal_embeddings(
self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is None:
return None
return self._process_image_input(image_input, **kwargs)
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
) -> torch.Tensor:
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
if multimodal_embeddings is not None:
inputs_embeds = merge_multimodal_embeddings(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
multimodal_embeddings=multimodal_embeddings,
placeholder_token_id=self.config.image_token_index,
)
return inputs_embeds
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
if intermediate_tensors is not None:
inputs_embeds = None
# NOTE: In v1, inputs_embeds is always generated at model runner, this
# condition is for v0 compatibility.
elif inputs_embeds is None:
vision_embeddings = self.get_multimodal_embeddings(**kwargs)
inputs_embeds = self.get_input_embeddings(input_ids,
vision_embeddings)
input_ids = None
hidden_states = self.language_model.model(
input_ids=input_ids,
positions=positions,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds,
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
return self.language_model.compute_logits(hidden_states,
sampling_metadata)
@cached_property
def sampler(self):
if hasattr(self.language_model, "sampler"):
return self.language_model.sampler
return get_sampler()
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
return self.language_model.sample(logits, sampling_metadata)