mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 07:15:01 +08:00
177 lines
6.4 KiB
Python
177 lines
6.4 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from typing import TYPE_CHECKING, Optional, Union
|
|
|
|
import torch
|
|
|
|
import vllm.envs as envs
|
|
from vllm.inputs import ProcessorInputs, PromptType
|
|
from vllm.logger import init_logger
|
|
from vllm.sampling_params import SamplingParams, SamplingType
|
|
|
|
from .interface import Platform, PlatformEnum, _Backend
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.config import ModelConfig, VllmConfig
|
|
from vllm.pooling_params import PoolingParams
|
|
else:
|
|
ModelConfig = None
|
|
VllmConfig = None
|
|
PoolingParams = None
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class TpuPlatform(Platform):
|
|
_enum = PlatformEnum.TPU
|
|
device_name: str = "tpu"
|
|
device_type: str = "tpu"
|
|
dispatch_key: str = "XLA"
|
|
ray_device_key: str = "TPU"
|
|
device_control_env_var: str = "TPU_VISIBLE_CHIPS"
|
|
|
|
supported_quantization: list[str] = [
|
|
"tpu_int8", "compressed-tensors", "compressed_tensors"
|
|
]
|
|
|
|
additional_env_vars: list[str] = [
|
|
"TPU_CHIPS_PER_HOST_BOUNDS", "TPU_HOST_BOUNDS"
|
|
]
|
|
|
|
@classmethod
|
|
def get_attn_backend_cls(cls, selected_backend: _Backend, head_size: int,
|
|
dtype: torch.dtype, kv_cache_dtype: Optional[str],
|
|
block_size: int, use_v1: bool,
|
|
use_mla: bool) -> str:
|
|
if (selected_backend != _Backend.PALLAS
|
|
and selected_backend != _Backend.PALLAS_VLLM_V1):
|
|
logger.info("Cannot use %s backend on TPU.", selected_backend)
|
|
|
|
if use_v1:
|
|
logger.info("Using Pallas V1 backend.")
|
|
return "vllm.v1.attention.backends.pallas.PallasAttentionBackend"
|
|
else:
|
|
logger.info("Using Pallas backend.")
|
|
return "vllm.attention.backends.pallas.PallasAttentionBackend"
|
|
|
|
@classmethod
|
|
def get_device_name(cls, device_id: int = 0) -> str:
|
|
return "tpu"
|
|
|
|
@classmethod
|
|
def get_device_total_memory(cls, device_id: int = 0) -> int:
|
|
raise NotImplementedError
|
|
|
|
@classmethod
|
|
def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
|
|
return not envs.VLLM_USE_V1
|
|
|
|
@classmethod
|
|
def inference_mode(cls):
|
|
return torch.no_grad()
|
|
|
|
@classmethod
|
|
def check_and_update_config(cls, vllm_config: VllmConfig) -> None:
|
|
from vllm.config import CompilationLevel
|
|
|
|
cache_config = vllm_config.cache_config
|
|
if cache_config and cache_config.block_size is None:
|
|
cache_config.block_size = 16
|
|
|
|
compilation_config = vllm_config.compilation_config
|
|
|
|
# TPU only supports DYNAMO_ONCE compilation level
|
|
if compilation_config.level != CompilationLevel.DYNAMO_ONCE:
|
|
logger.info("[TPU] Forcing DYNAMO_ONCE compilation level")
|
|
compilation_config.level = CompilationLevel.DYNAMO_ONCE
|
|
|
|
if compilation_config.backend == "":
|
|
compilation_config.backend = "openxla"
|
|
|
|
assert vllm_config.speculative_config is None, \
|
|
"TPU does not support speculative decoding"
|
|
|
|
if vllm_config.model_config.dtype in (torch.float16, torch.float32):
|
|
logger.warning(
|
|
"The TPU backend currently does not support %s. "
|
|
"Using bfloat16 instead.", vllm_config.model_config.dtype)
|
|
vllm_config.model_config.dtype = torch.bfloat16
|
|
|
|
if envs.VLLM_USE_V1:
|
|
from vllm.v1.attention.backends.pallas import (
|
|
PallasAttentionBackend)
|
|
min_page_size = PallasAttentionBackend.get_min_page_size(
|
|
vllm_config)
|
|
if min_page_size > vllm_config.cache_config.block_size:
|
|
logger.warning(
|
|
"Increase the page size from %s to %s to make sure there's"
|
|
"no SMEM OOM",
|
|
vllm_config.cache_config.block_size,
|
|
min_page_size,
|
|
)
|
|
vllm_config.cache_config.block_size = min_page_size
|
|
|
|
parallel_config = vllm_config.parallel_config
|
|
scheduler_config = vllm_config.scheduler_config
|
|
if parallel_config.worker_cls == "auto":
|
|
if scheduler_config.is_multi_step:
|
|
if envs.VLLM_USE_V1:
|
|
raise NotImplementedError(
|
|
"Multi-step scheduling is not supported (and not "
|
|
"needed) on vLLM V1. Please launch without "
|
|
"--num-scheduler-steps.")
|
|
else:
|
|
parallel_config.worker_cls = \
|
|
"vllm.worker.multi_step_tpu_worker.MultiStepTPUWorker"
|
|
else:
|
|
if envs.VLLM_USE_V1:
|
|
parallel_config.worker_cls = \
|
|
"vllm.v1.worker.tpu_worker.TPUWorker"
|
|
else:
|
|
parallel_config.worker_cls = \
|
|
"vllm.worker.tpu_worker.TPUWorker"
|
|
|
|
assert not vllm_config.speculative_config, (
|
|
"Speculative decoding is not yet supported for TPU backend")
|
|
|
|
if scheduler_config.is_multimodal_model and not \
|
|
scheduler_config.disable_chunked_mm_input:
|
|
logger.warning("TPU does not support running Multimodal models"\
|
|
" without setting `--disable_chunked_mm_input`. " \
|
|
"Forcing --disable_chunked_mm_input.")
|
|
scheduler_config.disable_chunked_mm_input = True
|
|
|
|
@classmethod
|
|
def is_pin_memory_available(cls):
|
|
logger.warning("Pin memory is not supported on TPU.")
|
|
return False
|
|
|
|
@classmethod
|
|
def get_device_communicator_cls(cls) -> str:
|
|
return "vllm.distributed.device_communicators.tpu_communicator.TpuCommunicator" # noqa
|
|
|
|
@classmethod
|
|
def use_all_gather(cls) -> bool:
|
|
return True
|
|
|
|
@classmethod
|
|
def supports_v1(cls, model_config: ModelConfig) -> bool:
|
|
# V1 support on TPU is experimental
|
|
return True
|
|
|
|
@classmethod
|
|
def validate_request(
|
|
cls,
|
|
prompt: PromptType,
|
|
params: Union[SamplingParams, PoolingParams],
|
|
processed_inputs: ProcessorInputs,
|
|
) -> None:
|
|
"""Raises if this request is unsupported on this platform"""
|
|
if isinstance(params, SamplingParams):
|
|
if params.guided_decoding is not None and not envs.VLLM_USE_V1:
|
|
raise ValueError("Structured output is not supported on "
|
|
f"{cls.device_name} V0.")
|
|
if params.sampling_type == SamplingType.RANDOM_SEED:
|
|
raise ValueError(
|
|
"Torch XLA does not support per-request seed.")
|