Chenyaaang 83d933718c
[Core][V1][TPU] Enable structured decoding on TPU V1 (#16499)
Signed-off-by: Chenyaaang <chenyangli@google.com>
2025-04-22 18:05:23 -06:00

177 lines
6.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from typing import TYPE_CHECKING, Optional, Union
import torch
import vllm.envs as envs
from vllm.inputs import ProcessorInputs, PromptType
from vllm.logger import init_logger
from vllm.sampling_params import SamplingParams, SamplingType
from .interface import Platform, PlatformEnum, _Backend
if TYPE_CHECKING:
from vllm.config import ModelConfig, VllmConfig
from vllm.pooling_params import PoolingParams
else:
ModelConfig = None
VllmConfig = None
PoolingParams = None
logger = init_logger(__name__)
class TpuPlatform(Platform):
_enum = PlatformEnum.TPU
device_name: str = "tpu"
device_type: str = "tpu"
dispatch_key: str = "XLA"
ray_device_key: str = "TPU"
device_control_env_var: str = "TPU_VISIBLE_CHIPS"
supported_quantization: list[str] = [
"tpu_int8", "compressed-tensors", "compressed_tensors"
]
additional_env_vars: list[str] = [
"TPU_CHIPS_PER_HOST_BOUNDS", "TPU_HOST_BOUNDS"
]
@classmethod
def get_attn_backend_cls(cls, selected_backend: _Backend, head_size: int,
dtype: torch.dtype, kv_cache_dtype: Optional[str],
block_size: int, use_v1: bool,
use_mla: bool) -> str:
if (selected_backend != _Backend.PALLAS
and selected_backend != _Backend.PALLAS_VLLM_V1):
logger.info("Cannot use %s backend on TPU.", selected_backend)
if use_v1:
logger.info("Using Pallas V1 backend.")
return "vllm.v1.attention.backends.pallas.PallasAttentionBackend"
else:
logger.info("Using Pallas backend.")
return "vllm.attention.backends.pallas.PallasAttentionBackend"
@classmethod
def get_device_name(cls, device_id: int = 0) -> str:
return "tpu"
@classmethod
def get_device_total_memory(cls, device_id: int = 0) -> int:
raise NotImplementedError
@classmethod
def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
return not envs.VLLM_USE_V1
@classmethod
def inference_mode(cls):
return torch.no_grad()
@classmethod
def check_and_update_config(cls, vllm_config: VllmConfig) -> None:
from vllm.config import CompilationLevel
cache_config = vllm_config.cache_config
if cache_config and cache_config.block_size is None:
cache_config.block_size = 16
compilation_config = vllm_config.compilation_config
# TPU only supports DYNAMO_ONCE compilation level
if compilation_config.level != CompilationLevel.DYNAMO_ONCE:
logger.info("[TPU] Forcing DYNAMO_ONCE compilation level")
compilation_config.level = CompilationLevel.DYNAMO_ONCE
if compilation_config.backend == "":
compilation_config.backend = "openxla"
assert vllm_config.speculative_config is None, \
"TPU does not support speculative decoding"
if vllm_config.model_config.dtype in (torch.float16, torch.float32):
logger.warning(
"The TPU backend currently does not support %s. "
"Using bfloat16 instead.", vllm_config.model_config.dtype)
vllm_config.model_config.dtype = torch.bfloat16
if envs.VLLM_USE_V1:
from vllm.v1.attention.backends.pallas import (
PallasAttentionBackend)
min_page_size = PallasAttentionBackend.get_min_page_size(
vllm_config)
if min_page_size > vllm_config.cache_config.block_size:
logger.warning(
"Increase the page size from %s to %s to make sure there's"
"no SMEM OOM",
vllm_config.cache_config.block_size,
min_page_size,
)
vllm_config.cache_config.block_size = min_page_size
parallel_config = vllm_config.parallel_config
scheduler_config = vllm_config.scheduler_config
if parallel_config.worker_cls == "auto":
if scheduler_config.is_multi_step:
if envs.VLLM_USE_V1:
raise NotImplementedError(
"Multi-step scheduling is not supported (and not "
"needed) on vLLM V1. Please launch without "
"--num-scheduler-steps.")
else:
parallel_config.worker_cls = \
"vllm.worker.multi_step_tpu_worker.MultiStepTPUWorker"
else:
if envs.VLLM_USE_V1:
parallel_config.worker_cls = \
"vllm.v1.worker.tpu_worker.TPUWorker"
else:
parallel_config.worker_cls = \
"vllm.worker.tpu_worker.TPUWorker"
assert not vllm_config.speculative_config, (
"Speculative decoding is not yet supported for TPU backend")
if scheduler_config.is_multimodal_model and not \
scheduler_config.disable_chunked_mm_input:
logger.warning("TPU does not support running Multimodal models"\
" without setting `--disable_chunked_mm_input`. " \
"Forcing --disable_chunked_mm_input.")
scheduler_config.disable_chunked_mm_input = True
@classmethod
def is_pin_memory_available(cls):
logger.warning("Pin memory is not supported on TPU.")
return False
@classmethod
def get_device_communicator_cls(cls) -> str:
return "vllm.distributed.device_communicators.tpu_communicator.TpuCommunicator" # noqa
@classmethod
def use_all_gather(cls) -> bool:
return True
@classmethod
def supports_v1(cls, model_config: ModelConfig) -> bool:
# V1 support on TPU is experimental
return True
@classmethod
def validate_request(
cls,
prompt: PromptType,
params: Union[SamplingParams, PoolingParams],
processed_inputs: ProcessorInputs,
) -> None:
"""Raises if this request is unsupported on this platform"""
if isinstance(params, SamplingParams):
if params.guided_decoding is not None and not envs.VLLM_USE_V1:
raise ValueError("Structured output is not supported on "
f"{cls.device_name} V0.")
if params.sampling_type == SamplingType.RANDOM_SEED:
raise ValueError(
"Torch XLA does not support per-request seed.")