Dipika Sikka 8678a69ab5
[Kernel] Expand MoE weight loading + Add Fused Marlin MoE Kernel (#7527)
Co-authored-by: ElizaWszola <eliza@neuralmagic.com>
2024-08-21 16:17:10 -07:00

36 lines
1.2 KiB
Python

"""Utilities for selecting and loading models."""
import contextlib
from typing import Tuple, Type
import torch
from torch import nn
from vllm.config import ModelConfig
from vllm.model_executor.models import ModelRegistry
@contextlib.contextmanager
def set_default_torch_dtype(dtype: torch.dtype):
"""Sets the default torch dtype to the given dtype."""
old_dtype = torch.get_default_dtype()
torch.set_default_dtype(dtype)
yield
torch.set_default_dtype(old_dtype)
def get_model_architecture(
model_config: ModelConfig) -> Tuple[Type[nn.Module], str]:
architectures = getattr(model_config.hf_config, "architectures", [])
# Special handling for quantized Mixtral.
# FIXME(woosuk): This is a temporary hack.
mixtral_supported = ["fp8", "compressed-tensors"]
if (model_config.quantization is not None
and model_config.quantization not in mixtral_supported
and "MixtralForCausalLM" in architectures):
architectures = ["QuantMixtralForCausalLM"]
return ModelRegistry.resolve_model_cls(architectures)
def get_architecture_class_name(model_config: ModelConfig) -> str:
return get_model_architecture(model_config)[1]