mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 01:24:54 +08:00
103 lines
3.8 KiB
Python
103 lines
3.8 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
from typing import Any
|
|
|
|
import pytest
|
|
|
|
from ...utils import EmbedModelInfo, run_embedding_correctness_test
|
|
|
|
MODELS = [
|
|
########## BertModel
|
|
EmbedModelInfo("thenlper/gte-large",
|
|
architecture="BertModel",
|
|
dtype="float32",
|
|
enable_test=True),
|
|
EmbedModelInfo("thenlper/gte-base",
|
|
architecture="BertModel",
|
|
dtype="float32",
|
|
enable_test=False),
|
|
EmbedModelInfo("thenlper/gte-small",
|
|
architecture="BertModel",
|
|
dtype="float32",
|
|
enable_test=False),
|
|
EmbedModelInfo("thenlper/gte-large-zh",
|
|
architecture="BertModel",
|
|
dtype="float32",
|
|
enable_test=False),
|
|
EmbedModelInfo("thenlper/gte-base-zh",
|
|
architecture="BertModel",
|
|
dtype="float32",
|
|
enable_test=False),
|
|
EmbedModelInfo("thenlper/gte-small-zh",
|
|
architecture="BertModel",
|
|
dtype="float32",
|
|
enable_test=False),
|
|
########### NewModel
|
|
EmbedModelInfo("Alibaba-NLP/gte-multilingual-base",
|
|
architecture="GteNewModel",
|
|
enable_test=True),
|
|
EmbedModelInfo("Alibaba-NLP/gte-base-en-v1.5",
|
|
architecture="GteNewModel",
|
|
enable_test=True),
|
|
EmbedModelInfo("Alibaba-NLP/gte-large-en-v1.5",
|
|
architecture="GteNewModel",
|
|
enable_test=True),
|
|
########### Qwen2ForCausalLM
|
|
EmbedModelInfo("Alibaba-NLP/gte-Qwen2-1.5B-instruct",
|
|
architecture="Qwen2ForCausalLM",
|
|
enable_test=True),
|
|
EmbedModelInfo("Alibaba-NLP/gte-Qwen2-7B-instruct",
|
|
architecture="Qwen2ForCausalLM",
|
|
enable_test=False),
|
|
########## ModernBertModel
|
|
EmbedModelInfo("Alibaba-NLP/gte-modernbert-base",
|
|
architecture="ModernBertModel",
|
|
enable_test=True),
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("model_info", MODELS)
|
|
def test_models_mteb(hf_runner, vllm_runner,
|
|
model_info: EmbedModelInfo) -> None:
|
|
from .mteb_utils import mteb_test_embed_models
|
|
|
|
vllm_extra_kwargs: dict[str, Any] = {}
|
|
if model_info.name == "Alibaba-NLP/gte-Qwen2-1.5B-instruct":
|
|
vllm_extra_kwargs["hf_overrides"] = {"is_causal": True}
|
|
|
|
if model_info.architecture == "GteNewModel":
|
|
vllm_extra_kwargs["hf_overrides"] = {"architectures": ["GteNewModel"]}
|
|
|
|
mteb_test_embed_models(hf_runner, vllm_runner, model_info,
|
|
vllm_extra_kwargs)
|
|
|
|
|
|
@pytest.mark.parametrize("model_info", MODELS)
|
|
def test_models_correctness(hf_runner, vllm_runner, model_info: EmbedModelInfo,
|
|
example_prompts) -> None:
|
|
if not model_info.enable_test:
|
|
pytest.skip("Skipping test.")
|
|
|
|
# ST will strip the input texts, see test_embedding.py
|
|
example_prompts = [str(s).strip() for s in example_prompts]
|
|
|
|
vllm_extra_kwargs: dict[str, Any] = {}
|
|
if model_info.name == "Alibaba-NLP/gte-Qwen2-1.5B-instruct":
|
|
vllm_extra_kwargs["hf_overrides"] = {"is_causal": True}
|
|
|
|
if model_info.architecture == "GteNewModel":
|
|
vllm_extra_kwargs["hf_overrides"] = {"architectures": ["GteNewModel"]}
|
|
|
|
with vllm_runner(model_info.name,
|
|
task="embed",
|
|
dtype=model_info.dtype,
|
|
max_model_len=None,
|
|
**vllm_extra_kwargs) as vllm_model:
|
|
vllm_outputs = vllm_model.encode(example_prompts)
|
|
|
|
with hf_runner(
|
|
model_info.name,
|
|
dtype=model_info.dtype,
|
|
is_sentence_transformer=True,
|
|
) as hf_model:
|
|
run_embedding_correctness_test(hf_model, example_prompts, vllm_outputs)
|