103 lines
3.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from typing import Any
import pytest
from ...utils import EmbedModelInfo, run_embedding_correctness_test
MODELS = [
########## BertModel
EmbedModelInfo("thenlper/gte-large",
architecture="BertModel",
dtype="float32",
enable_test=True),
EmbedModelInfo("thenlper/gte-base",
architecture="BertModel",
dtype="float32",
enable_test=False),
EmbedModelInfo("thenlper/gte-small",
architecture="BertModel",
dtype="float32",
enable_test=False),
EmbedModelInfo("thenlper/gte-large-zh",
architecture="BertModel",
dtype="float32",
enable_test=False),
EmbedModelInfo("thenlper/gte-base-zh",
architecture="BertModel",
dtype="float32",
enable_test=False),
EmbedModelInfo("thenlper/gte-small-zh",
architecture="BertModel",
dtype="float32",
enable_test=False),
########### NewModel
EmbedModelInfo("Alibaba-NLP/gte-multilingual-base",
architecture="GteNewModel",
enable_test=True),
EmbedModelInfo("Alibaba-NLP/gte-base-en-v1.5",
architecture="GteNewModel",
enable_test=True),
EmbedModelInfo("Alibaba-NLP/gte-large-en-v1.5",
architecture="GteNewModel",
enable_test=True),
########### Qwen2ForCausalLM
EmbedModelInfo("Alibaba-NLP/gte-Qwen2-1.5B-instruct",
architecture="Qwen2ForCausalLM",
enable_test=True),
EmbedModelInfo("Alibaba-NLP/gte-Qwen2-7B-instruct",
architecture="Qwen2ForCausalLM",
enable_test=False),
########## ModernBertModel
EmbedModelInfo("Alibaba-NLP/gte-modernbert-base",
architecture="ModernBertModel",
enable_test=True),
]
@pytest.mark.parametrize("model_info", MODELS)
def test_models_mteb(hf_runner, vllm_runner,
model_info: EmbedModelInfo) -> None:
from .mteb_utils import mteb_test_embed_models
vllm_extra_kwargs: dict[str, Any] = {}
if model_info.name == "Alibaba-NLP/gte-Qwen2-1.5B-instruct":
vllm_extra_kwargs["hf_overrides"] = {"is_causal": True}
if model_info.architecture == "GteNewModel":
vllm_extra_kwargs["hf_overrides"] = {"architectures": ["GteNewModel"]}
mteb_test_embed_models(hf_runner, vllm_runner, model_info,
vllm_extra_kwargs)
@pytest.mark.parametrize("model_info", MODELS)
def test_models_correctness(hf_runner, vllm_runner, model_info: EmbedModelInfo,
example_prompts) -> None:
if not model_info.enable_test:
pytest.skip("Skipping test.")
# ST will strip the input texts, see test_embedding.py
example_prompts = [str(s).strip() for s in example_prompts]
vllm_extra_kwargs: dict[str, Any] = {}
if model_info.name == "Alibaba-NLP/gte-Qwen2-1.5B-instruct":
vllm_extra_kwargs["hf_overrides"] = {"is_causal": True}
if model_info.architecture == "GteNewModel":
vllm_extra_kwargs["hf_overrides"] = {"architectures": ["GteNewModel"]}
with vllm_runner(model_info.name,
task="embed",
dtype=model_info.dtype,
max_model_len=None,
**vllm_extra_kwargs) as vllm_model:
vllm_outputs = vllm_model.encode(example_prompts)
with hf_runner(
model_info.name,
dtype=model_info.dtype,
is_sentence_transformer=True,
) as hf_model:
run_embedding_correctness_test(hf_model, example_prompts, vllm_outputs)