vllm/vllm/model_executor/models/llava_onevision.py
Roger Wang 874f7c292a
[Bugfix] Fix max image feature size for Llava-one-vision (#12104)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-01-16 14:54:06 +00:00

908 lines
35 KiB
Python

import math
from functools import cached_property
from typing import (Final, Iterable, List, Literal, Mapping, Optional,
Protocol, Set, Tuple, TypedDict, Union)
import torch
import torch.nn as nn
from transformers import (BatchFeature, LlavaOnevisionConfig,
LlavaOnevisionProcessor)
from transformers.models.llava_onevision.modeling_llava_onevision import (
get_anyres_image_grid_shape, unpad_image)
from typing_extensions import NotRequired
from vllm.attention import AttentionMetadata
from vllm.config import VllmConfig
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (MultiModalFieldConfig, MultiModalKwargs,
NestedTensors)
from vllm.multimodal.parse import (ImageSize, MultiModalDataItems,
VideoEmbeddingItems, VideoProcessorItems)
from vllm.multimodal.processing import PromptReplacement
from vllm.multimodal.profiling import ProcessorInputs
from vllm.sequence import IntermediateTensors
from vllm.utils import is_list_of
from .clip import CLIPVisionModel
from .interfaces import SupportsMultiModal, SupportsPP
from .llava import LlavaDummyInputsBuilder, init_vision_tower_for_llava
from .llava_next import (BaseLlavaNextMultiModalProcessor, LlavaNextLikeConfig,
LlavaNextProcessingInfo)
from .siglip import SiglipVisionModel
from .utils import (AutoWeightsLoader, flatten_bn, init_vllm_registered_model,
maybe_prefix, merge_multimodal_embeddings)
# For profile run
_MAX_FRAMES_PER_VIDEO = 16
class LlavaOnevisionVideoPixelInputs(TypedDict):
type: Literal["pixel_values_videos"]
data: Union[torch.Tensor, List[torch.Tensor]]
"""
Shape: `(batch_size, num_videos, num_frames, num_channels, height, width)`
Note that `num_videos` may be different for each batch, and 'num_frames'
may be different for each video, in which case the data is passed as a
list instead of a batched tensor.
"""
class LlavaOnevisionImagePixelInputs(TypedDict):
type: Literal["pixel_values"]
data: Union[torch.Tensor, List[torch.Tensor]]
"""
Shape:
`(batch_size * num_images, 1 + num_patches, num_channels, height, width)`
Note that `num_patches` may be different per batch and image,
in which case the data is passed as a list instead of a batched tensor.
"""
image_sizes: NotRequired[torch.Tensor]
"""
Shape: `(batch_size * num_images, 2)`
This should be in `(height, width)` format.
"""
class LlavaOnevisionImageEmbeddingInputs(TypedDict):
type: Literal["image_embeds"]
data: torch.Tensor
"""Shape: `(batch_size * num_images, image_feature_size, hidden_size)`
`hidden_size` must match the hidden size of language model backbone.
"""
LlavaOnevisionImageInputs = Union[LlavaOnevisionImagePixelInputs,
LlavaOnevisionImageEmbeddingInputs]
LlavaOnevisionMultiInputs = Union[LlavaOnevisionImageInputs,
LlavaOnevisionVideoPixelInputs]
class LlavaOnevisionLikeConfig(LlavaNextLikeConfig, Protocol):
video_token_index: Final[int]
class LlavaOnevisionProcessingInfo(LlavaNextProcessingInfo):
def get_hf_config(self) -> LlavaOnevisionLikeConfig:
return self.ctx.get_hf_config(LlavaOnevisionConfig)
def get_hf_processor(self):
return self.ctx.get_hf_processor(LlavaOnevisionProcessor)
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
return {"image": None, "video": None}
def get_mm_max_tokens_per_item(self, seq_len: int) -> Mapping[str, int]:
return {
"image": self.get_max_image_tokens(),
"video": self.get_max_video_tokens(seq_len),
}
# Based on: https://github.com/huggingface/text-generation-inference/blob/v3.0.1/server/text_generation_server/models/vlm_causal_lm.py#L86
# with additional logic afterwards taken from LlavaOnevisionProcessor
def _get_num_unpadded_features(
self,
*,
original_height: int,
original_width: int,
npatches: int,
num_patch_height: int,
num_patch_width: int,
) -> tuple[int, int]:
current_height = npatches * num_patch_height
current_width = npatches * num_patch_width
aspect_ratio = original_width / original_height
current_aspect_ratio = current_width / current_height
if aspect_ratio > current_aspect_ratio:
new_height = (original_height * current_width) // original_width
padding = (current_height - new_height) // 2
current_height = current_height - (2 * padding)
else:
new_width = (original_width * current_height) // original_height
padding = (current_width - new_width) // 2
current_width = current_width - (2 * padding)
unpadded_features = current_height * current_width
newline_features = current_height
ratio = math.sqrt(current_height * current_width / (9 * npatches**2))
if ratio > 1.1:
height_factor = int(current_height // ratio)
width_factor = int(current_width // ratio)
unpadded_features = height_factor * width_factor
newline_features = height_factor
return (unpadded_features, newline_features)
def get_image_size_with_most_features(self) -> ImageSize:
# NOTE: This hardcoded value is found via processor tests
return ImageSize(width=1153, height=944)
def _get_num_frame_tokens(
self,
*,
image_width: int,
image_height: int,
) -> int:
hf_config = self.get_hf_config()
spatial_pool_stride = getattr(hf_config, "spatial_pool_stride", 2)
vision_encoder_info = self.get_vision_encoder_info()
patch_grid_length = vision_encoder_info.get_patch_grid_length()
pooled_grid_length = math.ceil(patch_grid_length / spatial_pool_stride)
return pooled_grid_length * pooled_grid_length
def get_num_video_tokens(
self,
*,
image_width: int,
image_height: int,
num_frames: int,
) -> int:
num_frame_tokens = self._get_num_frame_tokens(
image_width=image_width,
image_height=image_height,
)
return num_frame_tokens * num_frames + 1 # Newline token
def _get_max_video_frames(self, max_tokens: int) -> int:
target_width, target_height = self.get_image_size_with_most_features()
num_frames = 0
while True:
next_num_frames = num_frames + 1
next_max_tokens = self.get_num_video_tokens(
image_width=target_width,
image_height=target_height,
num_frames=next_num_frames,
)
if next_max_tokens > max_tokens:
break
num_frames = next_num_frames
return num_frames
def get_num_frames_with_most_features(self, seq_len: int) -> int:
mm_config = self.ctx.get_mm_config()
max_images = mm_config.limit_per_prompt.get("image", 1)
max_videos = mm_config.limit_per_prompt.get("video", 1)
max_image_tokens = self.get_max_image_tokens() * max_images
max_total_frames = self._get_max_video_frames(seq_len -
max_image_tokens)
max_frames_per_video = min(max_total_frames // max(max_videos, 1),
_MAX_FRAMES_PER_VIDEO)
return max(max_frames_per_video, 1)
def get_max_video_tokens(self, seq_len: int) -> int:
target_width, target_height = self.get_image_size_with_most_features()
return self.get_num_video_tokens(
image_width=target_width,
image_height=target_height,
num_frames=self.get_num_frames_with_most_features(seq_len),
)
class LlavaOnevisionDummyInputsBuilder(
LlavaDummyInputsBuilder[LlavaOnevisionProcessingInfo]):
def get_dummy_processor_inputs(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
num_images = mm_counts.get("image", 0)
num_videos = mm_counts.get("video", 0)
processor = self.info.get_hf_processor()
image_token = processor.image_token
video_token = processor.video_token
target_width, target_height = \
self.info.get_image_size_with_most_features()
target_num_frames = \
self.info.get_num_frames_with_most_features(seq_len)
mm_data = {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images),
"video":
self._get_dummy_videos(
width=target_width,
height=target_height,
num_frames=target_num_frames,
num_videos=num_videos,
)
}
return ProcessorInputs(
prompt_text=image_token * num_images + video_token * num_videos,
mm_data=mm_data,
)
class LlavaOnevisionMultiModalProcessor(
BaseLlavaNextMultiModalProcessor[LlavaOnevisionProcessingInfo]):
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
return dict(
pixel_values=MultiModalFieldConfig.batched("image"),
image_sizes=MultiModalFieldConfig.batched("image"),
image_embeds=MultiModalFieldConfig.batched("image"),
pixel_values_videos=MultiModalFieldConfig.batched("video"),
)
def _call_hf_processor(
self,
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
) -> BatchFeature:
mm_data = dict(mm_data)
videos = mm_data.pop("videos", [])
assert isinstance(videos, list)
if not videos:
return super()._call_hf_processor(
prompt=prompt,
mm_data=mm_data,
mm_kwargs=mm_kwargs,
)
processor = self.info.get_hf_processor()
video_token = processor.video_token
# LLaVA-OneVision processor doesn't support multiple videos
# with different sizes when converting back to tensors
text_image_outputs = super()._call_hf_processor(
prompt=prompt,
mm_data=mm_data,
mm_kwargs=mm_kwargs,
)
pixel_values_videos = []
for video in videos:
item_processor_data = dict(prompt=video_token, videos=video)
item_outputs = super()._call_hf_processor(
prompt=prompt,
mm_data=item_processor_data,
mm_kwargs=mm_kwargs,
)
pixel_values_videos.append(
item_outputs.pop("pixel_values_videos")[0])
combined_outputs = dict(
**text_image_outputs,
pixel_values_videos=pixel_values_videos,
)
return BatchFeature(combined_outputs)
def _get_prompt_replacements(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargs,
) -> list[PromptReplacement]:
image_repls = super()._get_prompt_replacements(
mm_items=mm_items,
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
out_mm_kwargs=out_mm_kwargs,
)
hf_config = self.info.get_hf_config()
video_token_id = hf_config.video_token_index
def get_video_replacement(item_idx: int):
videos = mm_items.get_items(
"video", (VideoEmbeddingItems, VideoProcessorItems))
if isinstance(videos, VideoEmbeddingItems):
num_video_tokens = videos.get_feature_size(item_idx)
else:
image_size = videos.get_frame_size(item_idx)
num_video_tokens = self.info.get_num_video_tokens(
image_width=image_size.width,
image_height=image_size.height,
num_frames=videos.get_num_frames(item_idx),
)
return [video_token_id] * num_video_tokens
return image_repls + [
PromptReplacement(
modality="video",
target=[video_token_id],
replacement=get_video_replacement,
),
]
class LlavaOnevisionMultiModalProjector(nn.Module):
def __init__(self, config: LlavaOnevisionConfig):
super().__init__()
self.linear_1 = nn.Linear(config.vision_config.hidden_size,
config.text_config.hidden_size,
bias=True)
self.act = get_act_fn(config.projector_hidden_act)
self.linear_2 = nn.Linear(config.text_config.hidden_size,
config.text_config.hidden_size,
bias=True)
def forward(self, image_features: torch.Tensor) -> torch.Tensor:
hidden_states = self.linear_1(image_features)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
@MULTIMODAL_REGISTRY.register_processor(
LlavaOnevisionMultiModalProcessor,
info=LlavaOnevisionProcessingInfo,
dummy_inputs=LlavaOnevisionDummyInputsBuilder)
class LlavaOnevisionForConditionalGeneration(nn.Module, SupportsMultiModal,
SupportsPP):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
self.config = config
self.multimodal_config = multimodal_config
# Initialize the vision tower only up to the required feature layer
self.vision_tower = init_vision_tower_for_llava(
config,
quant_config,
require_post_norm=False,
prefix=maybe_prefix(prefix, "vision_tower"))
self.multi_modal_projector = LlavaOnevisionMultiModalProjector(config)
self.language_model = init_vllm_registered_model(
vllm_config=vllm_config,
hf_config=config.text_config,
prefix=maybe_prefix(prefix, "language_model"),
)
self.image_newline = nn.Parameter(
torch.empty(config.text_config.hidden_size))
self.make_empty_intermediate_tensors = (
self.language_model.model.make_empty_intermediate_tensors)
@cached_property
def sampler(self):
if hasattr(self.language_model, "sampler"):
return self.language_model.sampler
return get_sampler()
def _validate_image_sizes(self, data: torch.Tensor) -> torch.Tensor:
expected_dims = (2, )
def _validate_shape(d: torch.Tensor):
actual_dims = tuple(d.shape)
if actual_dims != expected_dims:
expected_expr = str(expected_dims)
raise ValueError(
f"The expected shape of image sizes per image per batch "
f"is {expected_expr}. You supplied {tuple(d.shape)}.")
for d in data:
_validate_shape(d)
return data
def _validate_image_pixel_values(
self, data: Union[torch.Tensor, List[torch.Tensor]]
) -> Union[torch.Tensor, List[torch.Tensor]]:
h = w = self.config.vision_config.image_size
expected_dims = (3, h, w)
def _validate_shape(d: torch.Tensor):
actual_dims = tuple(d.shape[1:])
if actual_dims != expected_dims:
expected_expr = ("num_patches", *map(str, expected_dims))
raise ValueError(
"The expected shape of pixel values per image per batch "
f"is {expected_expr}. You supplied {tuple(d.shape)}.")
for d in data:
_validate_shape(d)
return data
def _parse_and_validate_image_input(
self, **kwargs: object) -> Optional[LlavaOnevisionImageInputs]:
pixel_values = kwargs.pop("pixel_values", None)
image_sizes = kwargs.pop("image_sizes", None)
image_embeds = kwargs.pop("image_embeds", None)
if pixel_values is None and image_embeds is None:
return None
if pixel_values is not None:
if not isinstance(pixel_values, (torch.Tensor, list)):
raise ValueError("Incorrect type of pixel values. "
f"Got type: {type(pixel_values)}")
if not isinstance(image_sizes, (torch.Tensor, list)):
raise ValueError("Incorrect type of image sizes. "
f"Got type: {type(image_sizes)}")
return LlavaOnevisionImagePixelInputs(
type="pixel_values",
data=self._validate_image_pixel_values(
flatten_bn(pixel_values)),
image_sizes=self._validate_image_sizes(
flatten_bn(image_sizes, concat=True)),
)
if image_embeds is not None:
if not isinstance(image_embeds, torch.Tensor):
raise ValueError("Incorrect type of image embeds. "
f"Got type: {type(image_embeds)}")
return LlavaOnevisionImageEmbeddingInputs(
type="image_embeds",
data=flatten_bn(image_embeds),
)
raise AssertionError("This line should be unreachable.")
def _validate_video_pixel_values(
self, data: Union[torch.Tensor, List[torch.Tensor]]
) -> Union[torch.Tensor, List[torch.Tensor]]:
h = w = self.config.vision_config.image_size
expected_dims = (3, h, w)
def _validate_shape(d: torch.Tensor):
actual_dims = tuple(d.shape[2:])
if actual_dims != expected_dims:
expected_expr = ("num_frames", *map(str, expected_dims))
raise ValueError(
"The expected shape of pixel values in each video frame "
f"is {expected_expr}. You supplied {tuple(d.shape)}.")
for d in data:
_validate_shape(d)
return data
def _parse_and_validate_video_input(
self,
**kwargs: object) -> Optional[LlavaOnevisionVideoPixelInputs]:
"""
A legal video input should have the following dimensions:
{
"pixel_values_videos" :
List[b, Tensor(nb_frames, nb_channels, height, width)]
}
"""
pixel_values = kwargs.pop("pixel_values_videos", None)
if pixel_values is None:
return None
if not (is_list_of(pixel_values,
(torch.Tensor)) # different shape videos
or isinstance(pixel_values,
torch.Tensor)): # same shape videos
raise ValueError("Incorrect type of pixel values. "
f"Got type: {type(pixel_values)}")
return LlavaOnevisionVideoPixelInputs(
type="pixel_values_videos",
data=pixel_values,
)
def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
modalities = {}
# Preserve the order of modalities if there are multiple of them
# from the order of kwargs.
for input_key in kwargs:
if input_key == "pixel_values" and "images" not in modalities:
modalities["images"] = self._parse_and_validate_image_input(
**kwargs)
if input_key == "pixel_values_videos" and "videos" not in modalities: # noqa E501
modalities["videos"] = self._parse_and_validate_video_input(
**kwargs)
return modalities
def _select_image_features(self, image_features: torch.Tensor, *,
strategy: str) -> torch.Tensor:
if strategy == "default":
return image_features[:, 1:]
elif strategy == "full":
return image_features
raise ValueError(f"Unexpected select feature strategy: {strategy}")
def _image_pixels_to_features(
self,
vision_tower: Union[CLIPVisionModel, SiglipVisionModel],
pixel_values: torch.Tensor,
) -> torch.Tensor:
# NOTE: we skip the step to select the vision feature layer since
# this is already done inside the vision tower
image_features = vision_tower(pixel_values)
return self._select_image_features(
image_features,
strategy=self.config.vision_feature_select_strategy,
)
# Based on: https://github.com/haotian-liu/LLaVA/blob/main/llava/model/llava_arch.py
def _merge_image_patch_embeddings(self,
image_size: torch.Tensor,
patch_embeddings: torch.Tensor,
*,
image_newline=None,
vision_aspect_ratio="anyres_max_9",
strategy: str) -> torch.Tensor:
if strategy == "flat":
return patch_embeddings.flatten(0, 1)
if strategy.startswith("spatial"):
height = width = self.config.vision_config.image_size \
// self.config.vision_config.patch_size
base_patch_embeds = patch_embeddings[0]
if height * width != base_patch_embeds.shape[0]:
raise ValueError(
"The number of patches is not consistent with the "
"image size.")
if patch_embeddings.shape[0] > 1:
other_patch_embeds = patch_embeddings[1:]
# Move to CPU to avoid floating-point errors
orig_height, orig_width = image_size.tolist()
# image_aspect_ratio == "anyres"
num_patch_height, num_patch_width = get_anyres_image_grid_shape(
(orig_height, orig_width),
self.config.image_grid_pinpoints,
self.config.vision_config.image_size,
)
num_patches = num_patch_height * num_patch_width
# Image patches might be padded for batch processing
other_patch_embeds = other_patch_embeds[:num_patches] \
.view(num_patch_height, num_patch_width, height, width, -1)
if "unpad" in strategy:
other_patch_embeds = other_patch_embeds \
.permute(4, 0, 2, 1, 3).contiguous() \
.flatten(1, 2).flatten(2, 3)
other_patch_embeds = unpad_image(other_patch_embeds,
(orig_height, orig_width))
max_num_patches = int(
vision_aspect_ratio.removeprefix("anyres_max_"))
channels, curr_height, curr_width = other_patch_embeds.shape
ratio = math.sqrt(curr_height * curr_width /
(max_num_patches * height**2))
if ratio > 1.1:
other_patch_embeds = other_patch_embeds[None]
other_patch_embeds = nn.functional.interpolate(
other_patch_embeds, [
int(curr_height // ratio),
int(curr_width // ratio)
],
mode="bilinear")[0]
if image_newline is not None:
other_patch_embeds = torch.cat(
(
other_patch_embeds,
image_newline[:, None, None] \
.expand(*other_patch_embeds.shape[:-1], 1) \
.to(other_patch_embeds.device),
),
dim=-1)
other_patch_embeds = other_patch_embeds \
.flatten(1, 2).transpose(0, 1)
else:
other_patch_embeds = other_patch_embeds \
.permute(0, 2, 1, 3, 4).contiguous() \
.flatten(0, 3)
merged_patch_embeddings = torch.cat(
(base_patch_embeds, other_patch_embeds), dim=0)
else:
if "unpad" in strategy:
merged_patch_embeddings = torch.cat(
(base_patch_embeds,
self.image_newline[None] \
.to(base_patch_embeds.device)
), dim=0)
else:
merged_patch_embeddings = base_patch_embeds
return merged_patch_embeddings
raise ValueError(f"Unexpected patch merge strategy: {strategy}")
def _process_image_pixels(
self,
inputs: LlavaOnevisionImagePixelInputs,
) -> Union[torch.Tensor, List[torch.Tensor]]:
assert self.vision_tower is not None
pixel_values = inputs["data"]
if isinstance(pixel_values, torch.Tensor):
b, num_patches, c, h, w = pixel_values.shape
stacked_pixel_values = pixel_values.view(b * num_patches, c, h, w)
stacked_image_features = self._image_pixels_to_features(
self.vision_tower, stacked_pixel_values)
stacked_patch_embeddings = self.multi_modal_projector(
stacked_image_features)
return stacked_patch_embeddings.view(
b, num_patches, *stacked_patch_embeddings.shape[1:])
num_patches_per_batch = [v.shape[0] for v in pixel_values]
stacked_pixel_values = torch.cat(pixel_values)
stacked_image_features = self._image_pixels_to_features(
self.vision_tower, stacked_pixel_values)
return [
self.multi_modal_projector(image_features) for image_features in
torch.split(stacked_image_features, num_patches_per_batch)
]
def _process_image_input(
self,
image_input: LlavaOnevisionImageInputs,
) -> Union[torch.Tensor, List[torch.Tensor]]:
if image_input["type"] == "image_embeds":
return [image_input["data"]]
patch_embeddings = self._process_image_pixels(image_input)
image_sizes = image_input.get("image_sizes")
if image_sizes is None:
batch_size = len(image_input["data"])
vision_config = self.config.vision_config
default_height = default_width = vision_config.image_size
image_sizes = torch.as_tensor([[default_height, default_width]
for _ in range(batch_size)])
return [
self._merge_image_patch_embeddings(
image_sizes[i],
patch_features_batch,
image_newline=self.image_newline,
strategy="spatial_unpad")
for i, patch_features_batch in enumerate(patch_embeddings)
]
def _add_image_newline(
self,
video_features: torch.Tensor,
videos: int = 1,
frames: int = 1,
strategy: str = "one_token",
) -> torch.Tensor:
if strategy == "one_token":
video_features = video_features.reshape(
videos, frames * video_features.shape[1], -1)
image_newline = self.image_newline[None, None, :].repeat(
videos, 1, 1).to(video_features.device)
video_features = torch.cat((video_features, image_newline), dim=1)
return video_features
raise ValueError(f"Unexpected video newline strategy: {strategy}")
def _video_pixels_to_features(
self,
vision_tower: Union[CLIPVisionModel, SiglipVisionModel],
pixel_values: torch.Tensor,
) -> torch.Tensor:
# NOTE: we skip the step to select the vision feature layer since
# this is already done inside the vision tower
video_features = vision_tower(pixel_values)
video_features = self._select_image_features(
video_features,
strategy=self.config.vision_feature_select_strategy,
)
video_features = self.multi_modal_projector(video_features)
video_features = self.apply_pooling(video_features)
return video_features
def _process_video_pixels(self, inputs: LlavaOnevisionVideoPixelInputs):
assert self.vision_tower is not None
video_pixels = inputs["data"]
if isinstance(video_pixels, torch.Tensor):
b, num_videos, frames, c, h, w = video_pixels.shape
pixel_values = video_pixels.view(b * num_videos * frames, c, h, w)
stacked_embeddings = self._video_pixels_to_features(
self.vision_tower, pixel_values)
stacked_embeddings = self._add_image_newline(stacked_embeddings,
videos=b * num_videos,
frames=frames,
strategy="one_token")
return stacked_embeddings
elif is_list_of(video_pixels, torch.Tensor):
stacked_embeddings = []
for video_pixel in video_pixels:
num_videos, frames, c, h, w = video_pixel.shape
pixel_values = video_pixel.view(num_videos * frames, c, h, w)
embeddings = self._video_pixels_to_features(
self.vision_tower, pixel_values)
embeddings = self._add_image_newline(embeddings,
videos=num_videos,
frames=frames,
strategy="one_token")
stacked_embeddings.append(embeddings)
return stacked_embeddings
else:
raise ValueError(
f"Unsupported type of video input {type(video_pixels)}")
def apply_pooling(self, image_features, stride=2):
vision_config = self.config.vision_config
height = width = vision_config.image_size // vision_config.patch_size
batch_frames, _, dim = image_features.shape
image_features = image_features.view(batch_frames, height, width, -1)
image_features = image_features.permute(0, 3, 1, 2)
# TODO support other pooling types config
height, width = image_features.shape[2:]
scaled_shape = [math.ceil(height / stride), math.ceil(width / stride)]
image_feature = nn.functional.interpolate(image_features,
size=scaled_shape,
mode='bilinear')
image_feature = image_feature.permute(0, 2, 3, 1)
image_feature = image_feature.view(batch_frames, -1, dim)
return image_feature
def get_multimodal_embeddings(
self, **kwargs) -> Optional[List[Tuple[NestedTensors, str]]]:
modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
if not modalities:
return None
# The result multimodal_embeddings is tuple of tensors, with each
# tensor correspoending to a multimodal data item (image or video).
multimodal_embeddings: tuple[torch.Tensor, ...] = ()
# NOTE: It is important to iterate over the keys in this dictionary
# to preserve the order of the modalities.
for modality in modalities:
if modality == "images":
image_input = modalities["images"]
vision_embeddings = self._process_image_input(image_input)
multimodal_embeddings += tuple(vision_embeddings)
if modality == "videos":
video_input = modalities["videos"]
video_embeddings = self._process_video_pixels(video_input)
multimodal_embeddings += tuple(video_embeddings)
return multimodal_embeddings
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[List[Tuple[NestedTensors,
str]]] = None,
) -> torch.Tensor:
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
if multimodal_embeddings is not None:
inputs_embeds = merge_multimodal_embeddings(
input_ids, inputs_embeds, multimodal_embeddings,
[self.config.image_token_index, self.config.video_token_index])
return inputs_embeds
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
"""Run forward pass for LlaVA-Onevision.
Args:
input_ids: Flattened (concatenated) input_ids corresponding to a
batch.
pixel_values_videos: Pixels in each frames for each input videos.
"""
if intermediate_tensors is not None:
inputs_embeds = None
# NOTE: In v1, inputs_embeds is always generated at model runner, this
# condition is for v0 compatibility.
elif inputs_embeds is None:
multimodal_embeddings = self.get_multimodal_embeddings(**kwargs)
inputs_embeds = self.get_input_embeddings(input_ids,
multimodal_embeddings)
input_ids = None
hidden_states = self.language_model.model(input_ids,
positions,
kv_caches,
attn_metadata,
intermediate_tensors,
inputs_embeds=inputs_embeds)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
return self.language_model.compute_logits(hidden_states,
sampling_metadata)
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
return self.language_model.sample(logits, sampling_metadata)
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights)