mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-01 02:08:41 +08:00
149 lines
4.6 KiB
Python
149 lines
4.6 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import dataclasses
|
|
from typing import Callable, Union
|
|
|
|
from torch._C._profiler import _EventType, _ProfilerEvent, _TensorMetadata
|
|
|
|
#
|
|
# String / Print Manipulation
|
|
#
|
|
|
|
|
|
def trim_string_front(string, width):
|
|
if len(string) > width:
|
|
offset = len(string) - width + 3
|
|
string = string[offset:]
|
|
if len(string) > 3:
|
|
string = "..." + string[3:]
|
|
return string
|
|
|
|
|
|
def trim_string_back(string, width):
|
|
if len(string) > width:
|
|
offset = len(string) - width + 3
|
|
string = string[:-offset]
|
|
if len(string) > 3:
|
|
string = string + "..."
|
|
return string
|
|
|
|
|
|
class TablePrinter:
|
|
|
|
def __init__(self, row_cls: type[dataclasses.dataclass],
|
|
column_widths: dict[str, int]):
|
|
self.row_cls = row_cls
|
|
self.fieldnames = [x.name for x in dataclasses.fields(row_cls)]
|
|
self.column_widths = column_widths
|
|
assert set(self.column_widths.keys()) == set(self.fieldnames)
|
|
|
|
def print_table(self, rows: list[dataclasses.dataclass]):
|
|
self._print_header()
|
|
self._print_line()
|
|
for row in rows:
|
|
self._print_row(row)
|
|
|
|
def _print_header(self):
|
|
for i, f in enumerate(self.fieldnames):
|
|
last = (i == len(self.fieldnames) - 1)
|
|
col_width = self.column_widths[f]
|
|
print(trim_string_back(f, col_width).ljust(col_width),
|
|
end=" | " if not last else "\n")
|
|
|
|
def _print_row(self, row):
|
|
assert isinstance(row, self.row_cls)
|
|
|
|
for i, f in enumerate(self.fieldnames):
|
|
last = (i == len(self.fieldnames) - 1)
|
|
col_width = self.column_widths[f]
|
|
val = getattr(row, f)
|
|
|
|
val_str = ""
|
|
if isinstance(val, str):
|
|
val_str = trim_string_back(val, col_width).ljust(col_width)
|
|
elif type(val) in [float, int]:
|
|
val_str = f"{float(val):>.2f}".rjust(col_width)
|
|
else:
|
|
val_str = f"{val}".rjust(col_width)
|
|
print(val_str, end=" | " if not last else "\n")
|
|
|
|
def _print_line(self):
|
|
total_col_width = 0
|
|
for column_width in self.column_widths.values():
|
|
total_col_width += column_width
|
|
print("=" * (total_col_width + 3 * (len(self.column_widths) - 1)))
|
|
|
|
|
|
def indent_string(string: str,
|
|
indent: int,
|
|
indent_style: Union[Callable[[int], str], str] = " ") -> str:
|
|
if indent:
|
|
if isinstance(indent_style, str):
|
|
return indent_style * indent + string
|
|
else:
|
|
return indent_style(indent) + string
|
|
else:
|
|
return string
|
|
|
|
|
|
#
|
|
# _ProfilerEvent utils
|
|
#
|
|
|
|
|
|
def event_has_module(event: _ProfilerEvent) -> bool:
|
|
event_type, typed_event = event.typed
|
|
if event_type == _EventType.PyCall:
|
|
return typed_event.module is not None
|
|
return False
|
|
|
|
|
|
def event_is_torch_op(event: _ProfilerEvent) -> bool:
|
|
return event.tag == _EventType.TorchOp
|
|
|
|
|
|
def event_arg_repr(arg) -> str:
|
|
if arg is None or type(arg) in [float, int, bool, str]:
|
|
return f"{arg}"
|
|
elif isinstance(arg, list):
|
|
return f"[{', '.join([event_arg_repr(x) for x in arg])}]"
|
|
elif isinstance(arg, tuple):
|
|
return f"({', '.join([event_arg_repr(x) for x in arg])})"
|
|
else:
|
|
assert isinstance(arg,
|
|
_TensorMetadata), f"Unsupported type: {type(arg)}"
|
|
sizes_str = ', '.join([str(x) for x in arg.sizes])
|
|
return f"{str(arg.dtype).replace('torch.', '')}[{sizes_str}]"
|
|
|
|
|
|
def event_torch_op_repr(event: _ProfilerEvent) -> str:
|
|
assert event.tag == _EventType.TorchOp
|
|
args_str = ', '.join([event_arg_repr(x) for x in event.typed[1].inputs])
|
|
return f"{event.name}({args_str})".replace("aten::", "")
|
|
|
|
|
|
def event_module_repr(event: _ProfilerEvent) -> str:
|
|
assert event_has_module(event)
|
|
module = event.typed[1].module
|
|
if module.parameters and len(module.parameters) > 0:
|
|
args_str = ', '.join(
|
|
[f'{x[0]}={event_arg_repr(x[1])}' for x in module.parameters])
|
|
return f"{module.cls_name}({args_str})"
|
|
else:
|
|
return module.cls_name
|
|
|
|
|
|
def event_torch_op_stack_trace(curr_event: _ProfilerEvent,
|
|
until: Callable[[_ProfilerEvent], bool]) -> str:
|
|
trace = ""
|
|
curr_event = curr_event.parent
|
|
while curr_event and not until(curr_event):
|
|
if event_is_torch_op(curr_event):
|
|
if len(trace) > 0:
|
|
trace += " <- "
|
|
trace += event_torch_op_repr(curr_event)
|
|
curr_event = curr_event.parent
|
|
|
|
return trace
|