mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-16 21:56:06 +08:00
Signed-off-by: Yeshwanth Surya <yeshsurya@gmail.com> Signed-off-by: Yeshwanth N <yeshsurya@gmail.com> Signed-off-by: yeshsurya <yeshsurya@gmail.com>
320 lines
12 KiB
Python
320 lines
12 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import asyncio
|
|
import dataclasses
|
|
import functools
|
|
import os
|
|
from argparse import Namespace
|
|
from pathlib import Path
|
|
from typing import Any
|
|
|
|
from fastapi import Request
|
|
from fastapi.responses import JSONResponse, StreamingResponse
|
|
from starlette.background import BackgroundTask, BackgroundTasks
|
|
|
|
from vllm.config import ModelConfig
|
|
from vllm.engine.arg_utils import EngineArgs
|
|
from vllm.engine.protocol import EngineClient
|
|
from vllm.entrypoints.chat_utils import (
|
|
load_chat_template,
|
|
resolve_hf_chat_template,
|
|
resolve_mistral_chat_template,
|
|
)
|
|
from vllm.entrypoints.openai.cli_args import make_arg_parser
|
|
from vllm.entrypoints.openai.protocol import (
|
|
ChatCompletionRequest,
|
|
CompletionRequest,
|
|
StreamOptions,
|
|
)
|
|
from vllm.entrypoints.openai.serving_models import LoRAModulePath
|
|
from vllm.logger import init_logger
|
|
from vllm.platforms import current_platform
|
|
from vllm.transformers_utils.tokenizers import MistralTokenizer
|
|
from vllm.utils.argparse_utils import FlexibleArgumentParser
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
VLLM_SUBCMD_PARSER_EPILOG = (
|
|
"For full list: vllm {subcmd} --help=all\n"
|
|
"For a section: vllm {subcmd} --help=ModelConfig (case-insensitive)\n" # noqa: E501
|
|
"For a flag: vllm {subcmd} --help=max-model-len (_ or - accepted)\n" # noqa: E501
|
|
"Documentation: https://docs.vllm.ai\n"
|
|
)
|
|
|
|
|
|
async def listen_for_disconnect(request: Request) -> None:
|
|
"""Returns if a disconnect message is received"""
|
|
while True:
|
|
message = await request.receive()
|
|
if message["type"] == "http.disconnect":
|
|
# If load tracking is enabled *and* the counter exists, decrement
|
|
# it. Combines the previous nested checks into a single condition
|
|
# to satisfy the linter rule.
|
|
if getattr(
|
|
request.app.state, "enable_server_load_tracking", False
|
|
) and hasattr(request.app.state, "server_load_metrics"):
|
|
request.app.state.server_load_metrics -= 1
|
|
break
|
|
|
|
|
|
def with_cancellation(handler_func):
|
|
"""Decorator that allows a route handler to be cancelled by client
|
|
disconnections.
|
|
|
|
This does _not_ use request.is_disconnected, which does not work with
|
|
middleware. Instead this follows the pattern from
|
|
starlette.StreamingResponse, which simultaneously awaits on two tasks- one
|
|
to wait for an http disconnect message, and the other to do the work that we
|
|
want done. When the first task finishes, the other is cancelled.
|
|
|
|
A core assumption of this method is that the body of the request has already
|
|
been read. This is a safe assumption to make for fastapi handlers that have
|
|
already parsed the body of the request into a pydantic model for us.
|
|
This decorator is unsafe to use elsewhere, as it will consume and throw away
|
|
all incoming messages for the request while it looks for a disconnect
|
|
message.
|
|
|
|
In the case where a `StreamingResponse` is returned by the handler, this
|
|
wrapper will stop listening for disconnects and instead the response object
|
|
will start listening for disconnects.
|
|
"""
|
|
|
|
# Functools.wraps is required for this wrapper to appear to fastapi as a
|
|
# normal route handler, with the correct request type hinting.
|
|
@functools.wraps(handler_func)
|
|
async def wrapper(*args, **kwargs):
|
|
# The request is either the second positional arg or `raw_request`
|
|
request = args[1] if len(args) > 1 else kwargs["raw_request"]
|
|
|
|
handler_task = asyncio.create_task(handler_func(*args, **kwargs))
|
|
cancellation_task = asyncio.create_task(listen_for_disconnect(request))
|
|
|
|
done, pending = await asyncio.wait(
|
|
[handler_task, cancellation_task], return_when=asyncio.FIRST_COMPLETED
|
|
)
|
|
for task in pending:
|
|
task.cancel()
|
|
|
|
if handler_task in done:
|
|
return handler_task.result()
|
|
return None
|
|
|
|
return wrapper
|
|
|
|
|
|
def decrement_server_load(request: Request):
|
|
request.app.state.server_load_metrics -= 1
|
|
|
|
|
|
def load_aware_call(func):
|
|
@functools.wraps(func)
|
|
async def wrapper(*args, **kwargs):
|
|
raw_request = kwargs.get("raw_request", args[1] if len(args) > 1 else None)
|
|
|
|
if raw_request is None:
|
|
raise ValueError(
|
|
"raw_request required when server load tracking is enabled"
|
|
)
|
|
|
|
if not getattr(raw_request.app.state, "enable_server_load_tracking", False):
|
|
return await func(*args, **kwargs)
|
|
|
|
# ensure the counter exists
|
|
if not hasattr(raw_request.app.state, "server_load_metrics"):
|
|
raw_request.app.state.server_load_metrics = 0
|
|
|
|
raw_request.app.state.server_load_metrics += 1
|
|
try:
|
|
response = await func(*args, **kwargs)
|
|
except Exception:
|
|
raw_request.app.state.server_load_metrics -= 1
|
|
raise
|
|
|
|
if isinstance(response, (JSONResponse, StreamingResponse)):
|
|
if response.background is None:
|
|
response.background = BackgroundTask(decrement_server_load, raw_request)
|
|
elif isinstance(response.background, BackgroundTasks):
|
|
response.background.add_task(decrement_server_load, raw_request)
|
|
elif isinstance(response.background, BackgroundTask):
|
|
# Convert the single BackgroundTask to BackgroundTasks
|
|
# and chain the decrement_server_load task to it
|
|
tasks = BackgroundTasks()
|
|
tasks.add_task(
|
|
response.background.func,
|
|
*response.background.args,
|
|
**response.background.kwargs,
|
|
)
|
|
tasks.add_task(decrement_server_load, raw_request)
|
|
response.background = tasks
|
|
else:
|
|
raw_request.app.state.server_load_metrics -= 1
|
|
|
|
return response
|
|
|
|
return wrapper
|
|
|
|
|
|
def cli_env_setup():
|
|
# The safest multiprocessing method is `spawn`, as the default `fork` method
|
|
# is not compatible with some accelerators. The default method will be
|
|
# changing in future versions of Python, so we should use it explicitly when
|
|
# possible.
|
|
#
|
|
# We only set it here in the CLI entrypoint, because changing to `spawn`
|
|
# could break some existing code using vLLM as a library. `spawn` will cause
|
|
# unexpected behavior if the code is not protected by
|
|
# `if __name__ == "__main__":`.
|
|
#
|
|
# References:
|
|
# - https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods
|
|
# - https://pytorch.org/docs/stable/notes/multiprocessing.html#cuda-in-multiprocessing
|
|
# - https://pytorch.org/docs/stable/multiprocessing.html#sharing-cuda-tensors
|
|
# - https://docs.habana.ai/en/latest/PyTorch/Getting_Started_with_PyTorch_and_Gaudi/Getting_Started_with_PyTorch.html?highlight=multiprocessing#torch-multiprocessing-for-dataloaders
|
|
if "VLLM_WORKER_MULTIPROC_METHOD" not in os.environ:
|
|
logger.debug("Setting VLLM_WORKER_MULTIPROC_METHOD to 'spawn'")
|
|
os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"
|
|
|
|
|
|
def _validate_truncation_size(
|
|
max_model_len: int,
|
|
truncate_prompt_tokens: int | None,
|
|
tokenization_kwargs: dict[str, Any] | None = None,
|
|
) -> int | None:
|
|
if truncate_prompt_tokens is not None:
|
|
if truncate_prompt_tokens <= -1:
|
|
truncate_prompt_tokens = max_model_len
|
|
|
|
if truncate_prompt_tokens > max_model_len:
|
|
raise ValueError(
|
|
f"truncate_prompt_tokens value ({truncate_prompt_tokens}) "
|
|
f"is greater than max_model_len ({max_model_len})."
|
|
f" Please, select a smaller truncation size."
|
|
)
|
|
|
|
if tokenization_kwargs is not None:
|
|
tokenization_kwargs["truncation"] = True
|
|
tokenization_kwargs["max_length"] = truncate_prompt_tokens
|
|
|
|
else:
|
|
if tokenization_kwargs is not None:
|
|
tokenization_kwargs["truncation"] = False
|
|
|
|
return truncate_prompt_tokens
|
|
|
|
|
|
def get_max_tokens(
|
|
max_model_len: int,
|
|
request: ChatCompletionRequest | CompletionRequest,
|
|
input_length: int,
|
|
default_sampling_params: dict,
|
|
) -> int:
|
|
max_tokens = getattr(request, "max_completion_tokens", None) or request.max_tokens
|
|
default_max_tokens = max_model_len - input_length
|
|
max_output_tokens = current_platform.get_max_output_tokens(input_length)
|
|
|
|
return min(
|
|
val
|
|
for val in (
|
|
default_max_tokens,
|
|
max_tokens,
|
|
max_output_tokens,
|
|
default_sampling_params.get("max_tokens"),
|
|
)
|
|
if val is not None
|
|
)
|
|
|
|
|
|
def log_non_default_args(args: Namespace | EngineArgs):
|
|
non_default_args = {}
|
|
|
|
# Handle Namespace
|
|
if isinstance(args, Namespace):
|
|
parser = make_arg_parser(FlexibleArgumentParser())
|
|
for arg, default in vars(parser.parse_args([])).items():
|
|
if default != getattr(args, arg):
|
|
non_default_args[arg] = getattr(args, arg)
|
|
|
|
# Handle EngineArgs instance
|
|
elif isinstance(args, EngineArgs):
|
|
default_args = EngineArgs(model=args.model) # Create default instance
|
|
for field in dataclasses.fields(args):
|
|
current_val = getattr(args, field.name)
|
|
default_val = getattr(default_args, field.name)
|
|
if current_val != default_val:
|
|
non_default_args[field.name] = current_val
|
|
if default_args.model != EngineArgs.model:
|
|
non_default_args["model"] = default_args.model
|
|
else:
|
|
raise TypeError(
|
|
"Unsupported argument type. Must be Namespace or EngineArgs instance."
|
|
)
|
|
|
|
logger.info("non-default args: %s", non_default_args)
|
|
|
|
|
|
def should_include_usage(
|
|
stream_options: StreamOptions | None, enable_force_include_usage: bool
|
|
) -> tuple[bool, bool]:
|
|
if stream_options:
|
|
include_usage = stream_options.include_usage or enable_force_include_usage
|
|
include_continuous_usage = include_usage and bool(
|
|
stream_options.continuous_usage_stats
|
|
)
|
|
else:
|
|
include_usage, include_continuous_usage = enable_force_include_usage, False
|
|
return include_usage, include_continuous_usage
|
|
|
|
|
|
def process_lora_modules(
|
|
args_lora_modules: list[LoRAModulePath], default_mm_loras: dict[str, str] | None
|
|
) -> list[LoRAModulePath]:
|
|
lora_modules = args_lora_modules
|
|
if default_mm_loras:
|
|
default_mm_lora_paths = [
|
|
LoRAModulePath(
|
|
name=modality,
|
|
path=lora_path,
|
|
)
|
|
for modality, lora_path in default_mm_loras.items()
|
|
]
|
|
if args_lora_modules is None:
|
|
lora_modules = default_mm_lora_paths
|
|
else:
|
|
lora_modules += default_mm_lora_paths
|
|
return lora_modules
|
|
|
|
|
|
async def process_chat_template(
|
|
args_chat_template: Path | str | None,
|
|
engine_client: EngineClient,
|
|
model_config: ModelConfig,
|
|
) -> str | None:
|
|
resolved_chat_template = load_chat_template(args_chat_template)
|
|
if resolved_chat_template is not None:
|
|
# Get the tokenizer to check official template
|
|
tokenizer = await engine_client.get_tokenizer()
|
|
|
|
if isinstance(tokenizer, MistralTokenizer):
|
|
# The warning is logged in resolve_mistral_chat_template.
|
|
resolved_chat_template = resolve_mistral_chat_template(
|
|
chat_template=resolved_chat_template
|
|
)
|
|
else:
|
|
hf_chat_template = resolve_hf_chat_template(
|
|
tokenizer=tokenizer,
|
|
chat_template=None,
|
|
tools=None,
|
|
model_config=model_config,
|
|
)
|
|
|
|
if hf_chat_template != resolved_chat_template:
|
|
logger.warning(
|
|
"Using supplied chat template: %s\n"
|
|
"It is different from official chat template '%s'. "
|
|
"This discrepancy may lead to performance degradation.",
|
|
resolved_chat_template,
|
|
model_config.model,
|
|
)
|
|
return resolved_chat_template
|