mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 00:17:47 +08:00
415 lines
15 KiB
Python
415 lines
15 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import glob
|
|
import json
|
|
import os
|
|
import platform
|
|
import subprocess
|
|
import sys
|
|
from dataclasses import dataclass
|
|
from typing import TYPE_CHECKING
|
|
|
|
import regex as re
|
|
import torch
|
|
|
|
from vllm import envs
|
|
from vllm.logger import init_logger
|
|
|
|
from .interface import CpuArchEnum, Platform, PlatformEnum
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.attention.backends.registry import AttentionBackendEnum
|
|
from vllm.config import VllmConfig
|
|
else:
|
|
AttentionBackendEnum = None
|
|
VllmConfig = None
|
|
|
|
|
|
def get_max_threads(pid=0):
|
|
if hasattr(os, "sched_getaffinity"):
|
|
return len(os.sched_getaffinity(pid))
|
|
elif platform.system() == "Darwin":
|
|
return os.cpu_count()
|
|
else:
|
|
raise NotImplementedError("Unsupported OS")
|
|
|
|
|
|
@dataclass
|
|
class LogicalCPUInfo:
|
|
id: int = -1
|
|
physical_core: int = -1
|
|
numa_node: int = -1
|
|
|
|
@classmethod
|
|
def _int(cls, value: str) -> int:
|
|
try:
|
|
int_value = int(value)
|
|
except Exception:
|
|
int_value = -1
|
|
return int_value
|
|
|
|
@staticmethod
|
|
def json_decoder(obj_dict: dict):
|
|
id = obj_dict.get("cpu")
|
|
physical_core = obj_dict.get("core")
|
|
numa_node = obj_dict.get("node")
|
|
|
|
if not (id is None or physical_core is None or numa_node is None):
|
|
return LogicalCPUInfo(
|
|
id=LogicalCPUInfo._int(id),
|
|
physical_core=LogicalCPUInfo._int(physical_core),
|
|
numa_node=LogicalCPUInfo._int(numa_node),
|
|
)
|
|
else:
|
|
return obj_dict
|
|
|
|
|
|
class CpuPlatform(Platform):
|
|
_enum = PlatformEnum.CPU
|
|
device_name: str = "cpu"
|
|
device_type: str = "cpu"
|
|
dispatch_key: str = "CPU"
|
|
dist_backend: str = "gloo"
|
|
device_control_env_var = "CPU_VISIBLE_MEMORY_NODES"
|
|
|
|
@property
|
|
def supported_dtypes(self) -> list[torch.dtype]:
|
|
if self.get_cpu_architecture() == CpuArchEnum.POWERPC:
|
|
return [torch.bfloat16, torch.float32]
|
|
elif self.get_cpu_architecture() == CpuArchEnum.ARM and sys.platform.startswith(
|
|
"darwin"
|
|
):
|
|
if (
|
|
subprocess.check_output(
|
|
["sysctl -n hw.optional.arm.FEAT_BF16"], shell=True
|
|
).strip()
|
|
== b"1"
|
|
):
|
|
return [torch.bfloat16, torch.float16, torch.float32]
|
|
return [torch.float16, torch.float32]
|
|
elif self.get_cpu_architecture() == CpuArchEnum.RISCV:
|
|
# Workaround for Issue #25655: RISC-V scheduler bug with float16
|
|
#
|
|
# Background:
|
|
# - RISC-V currently uses scalar code path
|
|
# - There is a latent bug in the vLLM scheduler that provides
|
|
# invalid
|
|
# physical_block_idx values under certain conditions
|
|
# - This bug causes segmentation faults when using float16
|
|
# dtype on RISC-V
|
|
# - Testing shows that forcing float32 successfully bypasses
|
|
# this issue
|
|
#
|
|
# Technical details:
|
|
# - The bug manifests as out-of-bounds physical_block_idx in
|
|
# block_tables
|
|
# - Only occurs on RISC-V hardware
|
|
# tested on Sophgo SG2044
|
|
# - Does not reproduce on x86 or other architectures
|
|
# - Root cause is in Python-level scheduling logic,
|
|
# not C++ kernels
|
|
#
|
|
# This is a temporary workaround until the scheduler bug is fixed.
|
|
# See: https://github.com/vllm-project/vllm/issues/25655
|
|
return [torch.float32]
|
|
# x86/aarch64 CPU has supported both bf16 and fp16 natively.
|
|
return [torch.bfloat16, torch.float16, torch.float32]
|
|
|
|
@classmethod
|
|
def get_device_name(cls, device_id: int = 0) -> str:
|
|
return "cpu"
|
|
|
|
@classmethod
|
|
def get_attn_backend_cls(
|
|
cls,
|
|
selected_backend: "AttentionBackendEnum",
|
|
head_size: int,
|
|
dtype: torch.dtype,
|
|
kv_cache_dtype: str | None,
|
|
block_size: int,
|
|
use_mla: bool,
|
|
has_sink: bool,
|
|
use_sparse: bool,
|
|
attn_type: str | None = None,
|
|
) -> str:
|
|
from vllm.attention.backends.registry import AttentionBackendEnum
|
|
|
|
if selected_backend and selected_backend != AttentionBackendEnum.CPU_ATTN:
|
|
logger.info("Cannot use %s backend on CPU.", selected_backend)
|
|
if use_mla:
|
|
raise NotImplementedError("MLA is not supported on CPU.")
|
|
if use_sparse:
|
|
raise NotImplementedError("Sparse Attention is not supported on CPU.")
|
|
return AttentionBackendEnum.CPU_ATTN.get_path()
|
|
|
|
@classmethod
|
|
def get_device_total_memory(cls, device_id: int = 0) -> int:
|
|
from vllm.utils.mem_constants import GiB_bytes
|
|
|
|
kv_cache_space = envs.VLLM_CPU_KVCACHE_SPACE
|
|
if kv_cache_space is None:
|
|
kv_cache_space = 4 * GiB_bytes # type: ignore
|
|
logger.warning_once(
|
|
"Environment variable VLLM_CPU_KVCACHE_SPACE (GiB) "
|
|
"for CPU backend is not set, using 4 by default."
|
|
)
|
|
else:
|
|
kv_cache_space *= GiB_bytes
|
|
|
|
return kv_cache_space
|
|
|
|
@classmethod
|
|
def set_device(cls, device: torch.device) -> None:
|
|
"""
|
|
Set the device for the current platform.
|
|
"""
|
|
torch.cpu.set_device(device)
|
|
|
|
@classmethod
|
|
def inference_mode(cls):
|
|
return torch.no_grad()
|
|
|
|
@classmethod
|
|
def check_and_update_config(cls, vllm_config: VllmConfig) -> None:
|
|
model_config = vllm_config.model_config
|
|
|
|
if model_config is not None:
|
|
model_config.disable_cascade_attn = True
|
|
|
|
cache_config = vllm_config.cache_config
|
|
|
|
if cache_config.block_size is None:
|
|
cache_config.block_size = 128
|
|
|
|
if cache_config.block_size % 32 != 0:
|
|
logger.warning(
|
|
"CPU backend prefers block_size is multiples of 32, "
|
|
"otherwise the performance is not optimized."
|
|
)
|
|
|
|
scheduler_config = vllm_config.scheduler_config
|
|
if (
|
|
scheduler_config.enable_chunked_prefill
|
|
or cache_config.enable_prefix_caching
|
|
) and cache_config.cache_dtype != "auto":
|
|
raise RuntimeError(
|
|
"Chunked-prefill and prefix-cache on the CPU "
|
|
"backend is not compatible with FP8 KV cache."
|
|
)
|
|
|
|
if cache_config.cache_dtype != "auto":
|
|
logger.warning(
|
|
"CPU backend doesn't support KV cache quantization fallback to auto."
|
|
)
|
|
cache_config.cache_dtype = "auto"
|
|
|
|
cache_config.cpu_kvcache_space_bytes = CpuPlatform.get_device_total_memory()
|
|
|
|
parallel_config = vllm_config.parallel_config
|
|
if (
|
|
parallel_config.world_size > 1
|
|
and parallel_config.distributed_executor_backend is not None
|
|
and parallel_config.distributed_executor_backend != "mp"
|
|
):
|
|
logger.warning(
|
|
(
|
|
"%s is not supported on CPU, fallback to mp "
|
|
"distributed executor backend."
|
|
),
|
|
parallel_config.distributed_executor_backend,
|
|
)
|
|
parallel_config.distributed_executor_backend = "mp"
|
|
if parallel_config.worker_cls == "auto":
|
|
parallel_config.worker_cls = "vllm.v1.worker.cpu_worker.CPUWorker"
|
|
# Disable DBO
|
|
if parallel_config.enable_dbo:
|
|
logger.warning("Dual-Batch Overlap is not supported on CPU, disabled.")
|
|
parallel_config.enable_dbo = False
|
|
|
|
# Note: workaround for v1 gpu_model_runner
|
|
from vllm.config import CompilationMode
|
|
|
|
vllm_config.compilation_config.cudagraph_capture_sizes = []
|
|
|
|
compilation_config = vllm_config.compilation_config
|
|
if vllm_config.compilation_config.mode == CompilationMode.VLLM_COMPILE:
|
|
# Note: vLLM V1 is using PIECEWISE level compilation, which will
|
|
# take time to compile kernels just-in-time with the inductor
|
|
# backend. For CPU CI tests, most of them are executed fast and
|
|
# compilations consume too much time, even with torch compile
|
|
# cache. So use VLLM_CPU_CI_ENV to indicate the CI environment,
|
|
# and just execute model with dynamo + eager mode to save time.
|
|
# VLLM_CPU_CI_ENV is only used as an internal variable.
|
|
if os.environ.get("VLLM_CPU_CI_ENV", "0") != "0":
|
|
backend = "eager"
|
|
else:
|
|
backend = "inductor"
|
|
|
|
compilation_config.mode = CompilationMode.DYNAMO_TRACE_ONCE
|
|
compilation_config.backend = backend
|
|
compilation_config.inductor_compile_config.update(
|
|
{
|
|
"dce": True,
|
|
"size_asserts": False,
|
|
"nan_asserts": False,
|
|
"epilogue_fusion": True,
|
|
}
|
|
)
|
|
|
|
if vllm_config.lora_config is not None:
|
|
compilation_config.mode = CompilationMode.NONE
|
|
|
|
assert vllm_config.device_config.device_type == "cpu"
|
|
|
|
#
|
|
# Environment variables for CPU executor
|
|
#
|
|
|
|
os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"
|
|
|
|
# Note: to avoid the error 'nthreads cannot be larger than environment
|
|
# variable "NUMEXPR_MAX_THREADS" (64)'.
|
|
os.environ["NUMEXPR_MAX_THREADS"] = str(get_max_threads())
|
|
|
|
if envs.VLLM_CPU_OMP_THREADS_BIND != "nobind":
|
|
# Set default threads num for OpenMP parallel
|
|
os.environ["OMP_NUM_THREADS"] = str(torch.get_num_threads())
|
|
else:
|
|
# In this case, setting the OpenMP configuration via
|
|
# OMP_NUM_THREADS is up to the user.
|
|
logger.info("Disabling binding processes to CPU cores...")
|
|
|
|
# Disable torch async compiling which won't work with daemonic processes
|
|
os.environ["TORCHINDUCTOR_COMPILE_THREADS"] = "1"
|
|
|
|
# Disable multi-stream for shared experts as no Stream on CPU
|
|
os.environ["VLLM_DISABLE_SHARED_EXPERTS_STREAM"] = "1"
|
|
|
|
# Intel OpenMP setting
|
|
ld_preload_str = os.getenv("LD_PRELOAD", "")
|
|
if "libiomp5.so" in ld_preload_str:
|
|
# The time(milliseconds) that a thread should wait after
|
|
# completing the execution of a parallel region, before sleeping.
|
|
os.environ["KMP_BLOCKTIME"] = "1"
|
|
# Prevents the CPU to run into low performance state
|
|
os.environ["KMP_TPAUSE"] = "0"
|
|
# Provides fine granularity parallelism
|
|
os.environ["KMP_FORKJOIN_BARRIER_PATTERN"] = "dist,dist"
|
|
os.environ["KMP_PLAIN_BARRIER_PATTERN"] = "dist,dist"
|
|
os.environ["KMP_REDUCTION_BARRIER_PATTERN"] = "dist,dist"
|
|
|
|
if (
|
|
platform.system() == "Linux"
|
|
and Platform.get_cpu_architecture()
|
|
in (CpuArchEnum.ARM, CpuArchEnum.POWERPC)
|
|
and not ("libomp" in ld_preload_str or "libgomp" in ld_preload_str)
|
|
):
|
|
# We need to LD_PRELOAD PyTorch's libgomp, otherwise only
|
|
# one core will be properly utilized when we thread-bind
|
|
# See: https://github.com/vllm-project/vllm/issues/27369
|
|
# TODO: Remove once:
|
|
# https://github.com/pytorch/pytorch/issues/166087 is fixed
|
|
|
|
# We need to find the location of PyTorch's libgomp
|
|
torch_pkg = os.path.dirname(torch.__file__)
|
|
site_root = os.path.dirname(torch_pkg)
|
|
torch_libs = os.path.join(site_root, "torch.libs")
|
|
pytorch_libgomp_so_candidates = glob.glob(
|
|
os.path.join(torch_libs, "libgomp-*.so*")
|
|
)
|
|
if pytorch_libgomp_so_candidates:
|
|
pytorch_libgomp_so = pytorch_libgomp_so_candidates[0]
|
|
if ld_preload_str:
|
|
ld_preload_str += ":"
|
|
ld_preload_str += pytorch_libgomp_so
|
|
os.environ["LD_PRELOAD"] = ld_preload_str
|
|
|
|
# To hint IPEX uses shared memory based AllReduce
|
|
os.environ["LOCAL_WORLD_SIZE"] = str(
|
|
vllm_config.parallel_config.tensor_parallel_size
|
|
)
|
|
|
|
if model_config is not None and model_config.use_mla:
|
|
logger.info(
|
|
"MLA is enabled on a non-GPU platform; forcing chunked "
|
|
"prefill and prefix caching to be disabled."
|
|
)
|
|
vllm_config.scheduler_config.enable_chunked_prefill = False
|
|
vllm_config.scheduler_config.max_num_batched_tokens = max(
|
|
vllm_config.scheduler_config.max_model_len,
|
|
vllm_config.scheduler_config.DEFAULT_MAX_NUM_BATCHED_TOKENS,
|
|
)
|
|
|
|
@classmethod
|
|
def get_allowed_cpu_core_node_list(cls) -> tuple[list[int], list[LogicalCPUInfo]]:
|
|
assert platform.system() == "Linux"
|
|
|
|
# Init LogicalCPUInfo from lscpu
|
|
lscpu_output = subprocess.check_output(
|
|
"lscpu -J -e=CPU,CORE,NODE", shell=True, text=True
|
|
)
|
|
lscpu_output = re.sub(r'"node":\s*-\s*(,|\n)', r'"node": 0\1', lscpu_output)
|
|
logical_cpu_list: list[LogicalCPUInfo] = json.loads(
|
|
lscpu_output, object_hook=LogicalCPUInfo.json_decoder
|
|
)["cpus"]
|
|
|
|
# Filter CPUs with invalid attributes
|
|
logical_cpu_list = [
|
|
x
|
|
for x in logical_cpu_list
|
|
if -1 not in (x.id, x.physical_core, x.numa_node)
|
|
]
|
|
|
|
# Filter allowed CPUs
|
|
if hasattr(os, "sched_getaffinity"):
|
|
allowed_cpu_id_list = os.sched_getaffinity(0)
|
|
else:
|
|
raise NotImplementedError("Unsupported OS")
|
|
logical_cpu_list = [x for x in logical_cpu_list if x.id in allowed_cpu_id_list]
|
|
|
|
# Get allowed NUMA nodes
|
|
allowed_numa_nodes = set()
|
|
for x in logical_cpu_list:
|
|
allowed_numa_nodes.add(x.numa_node) # type: ignore
|
|
allowed_numa_nodes_list = sorted(allowed_numa_nodes)
|
|
|
|
env_key = CpuPlatform.device_control_env_var
|
|
if env_key in os.environ and os.environ[env_key] != "":
|
|
visible_nodes = [int(s) for s in os.environ[env_key].split(",")]
|
|
allowed_numa_nodes_list = [
|
|
x for x in visible_nodes if x in allowed_cpu_id_list
|
|
]
|
|
|
|
return allowed_numa_nodes_list, logical_cpu_list
|
|
|
|
@classmethod
|
|
def is_pin_memory_available(cls) -> bool:
|
|
logger.warning("Pin memory is not supported on CPU.")
|
|
return False
|
|
|
|
@classmethod
|
|
def get_punica_wrapper(cls) -> str:
|
|
return "vllm.lora.punica_wrapper.punica_cpu.PunicaWrapperCPU"
|
|
|
|
@classmethod
|
|
def get_device_communicator_cls(cls) -> str:
|
|
"""
|
|
Get device specific communicator class for distributed communication.
|
|
"""
|
|
return "vllm.distributed.device_communicators.cpu_communicator.CpuCommunicator" # noqa
|
|
|
|
@classmethod
|
|
def supports_structured_output(cls) -> bool:
|
|
return True
|
|
|
|
@classmethod
|
|
def opaque_attention_op(cls) -> bool:
|
|
return True
|
|
|
|
@classmethod
|
|
def support_hybrid_kv_cache(cls) -> bool:
|
|
return True
|