mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-21 00:45:01 +08:00
809 lines
33 KiB
Python
809 lines
33 KiB
Python
"""Attention layer with xFormers and PagedAttention."""
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, List, Optional, Tuple, Type
|
|
|
|
import torch
|
|
from xformers import ops as xops
|
|
from xformers.ops.fmha.attn_bias import (AttentionBias,
|
|
BlockDiagonalCausalMask,
|
|
BlockDiagonalMask,
|
|
LowerTriangularMaskWithTensorBias)
|
|
|
|
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
|
AttentionMetadata, AttentionType)
|
|
from vllm.attention.backends.utils import (CommonAttentionState,
|
|
CommonMetadataBuilder)
|
|
from vllm.attention.ops.paged_attn import (PagedAttention,
|
|
PagedAttentionMetadata)
|
|
from vllm.logger import init_logger
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class XFormersBackend(AttentionBackend):
|
|
|
|
@staticmethod
|
|
def get_name() -> str:
|
|
return "xformers"
|
|
|
|
@staticmethod
|
|
def get_impl_cls() -> Type["XFormersImpl"]:
|
|
return XFormersImpl
|
|
|
|
@staticmethod
|
|
def get_metadata_cls() -> Type["AttentionMetadata"]:
|
|
return XFormersMetadata
|
|
|
|
@staticmethod
|
|
def get_builder_cls() -> Type["XFormersMetadataBuilder"]:
|
|
return XFormersMetadataBuilder
|
|
|
|
@staticmethod
|
|
def get_state_cls() -> Type["CommonAttentionState"]:
|
|
return CommonAttentionState
|
|
|
|
@staticmethod
|
|
def get_kv_cache_shape(
|
|
num_blocks: int,
|
|
block_size: int,
|
|
num_kv_heads: int,
|
|
head_size: int,
|
|
) -> Tuple[int, ...]:
|
|
return PagedAttention.get_kv_cache_shape(num_blocks, block_size,
|
|
num_kv_heads, head_size)
|
|
|
|
@staticmethod
|
|
def swap_blocks(
|
|
src_kv_cache: torch.Tensor,
|
|
dst_kv_cache: torch.Tensor,
|
|
src_to_dst: Dict[int, int],
|
|
) -> None:
|
|
PagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)
|
|
|
|
@staticmethod
|
|
def copy_blocks(
|
|
kv_caches: List[torch.Tensor],
|
|
src_to_dists: torch.Tensor,
|
|
) -> None:
|
|
PagedAttention.copy_blocks(kv_caches, src_to_dists)
|
|
|
|
|
|
@dataclass
|
|
class XFormersMetadata(AttentionMetadata, PagedAttentionMetadata):
|
|
"""Metadata for XFormersbackend.
|
|
|
|
NOTE: Any python object stored here is not updated when it is
|
|
cuda-graph replayed. If you have values that need to be changed
|
|
dynamically, it should be stored in tensor. The tensor has to be
|
|
updated from `CUDAGraphRunner.forward` API.
|
|
"""
|
|
|
|
# |---------- N-1 iteration --------|
|
|
# |---------------- N iteration ---------------------|
|
|
# |- tokenA -|......................|-- newTokens ---|
|
|
# |---------- context_len ----------|
|
|
# |-------------------- seq_len ----------------------|
|
|
# |-- query_len ---|
|
|
|
|
# seq_lens stored as a tensor.
|
|
seq_lens_tensor: Optional[torch.Tensor]
|
|
|
|
# FIXME: It is for flash attn.
|
|
# Maximum sequence length among prefill batch. 0 if there are decoding
|
|
# requests only.
|
|
max_prefill_seq_len: int
|
|
# Maximum sequence length among decode batch. 0 if there are prefill
|
|
# requests only.
|
|
max_decode_seq_len: int
|
|
|
|
# Whether or not if cuda graph is enabled.
|
|
# Cuda-graph is currently enabled for decoding only.
|
|
# TODO(woosuk): Move `use_cuda_graph` out since it's unrelated to attention.
|
|
use_cuda_graph: bool
|
|
|
|
# (batch_size,). The sequence length per sequence. Sequence length means
|
|
# the computed tokens + new tokens None if it is a decoding.
|
|
seq_lens: Optional[List[int]] = None
|
|
|
|
# FIXME: It is for flash attn.
|
|
# (batch_size + 1,). The cumulative sequence lengths of the sequences in
|
|
# the batch, used to index into sequence. E.g., if the sequence length is
|
|
# [4, 6], it is [0, 4, 10].
|
|
seq_start_loc: Optional[torch.Tensor] = None
|
|
|
|
# (batch_size,) A tensor of context lengths (tokens that are computed
|
|
# so far).
|
|
context_lens_tensor: Optional[torch.Tensor] = None
|
|
|
|
# Maximum query length in the batch. None for decoding.
|
|
max_query_len: Optional[int] = None
|
|
|
|
# Max number of query tokens among request in the batch.
|
|
max_decode_query_len: Optional[int] = None
|
|
|
|
# (batch_size + 1,). The cumulative subquery lengths of the sequences in
|
|
# the batch, used to index into subquery. E.g., if the subquery length
|
|
# is [4, 6], it is [0, 4, 10].
|
|
query_start_loc: Optional[torch.Tensor] = None
|
|
|
|
# Self-attention prefill/decode metadata cache
|
|
_cached_prefill_metadata: Optional["XFormersMetadata"] = None
|
|
_cached_decode_metadata: Optional["XFormersMetadata"] = None
|
|
|
|
# Begin encoder attn & enc/dec cross-attn fields...
|
|
|
|
# Encoder sequence lengths representation
|
|
encoder_seq_lens: Optional[List[int]] = None
|
|
encoder_seq_lens_tensor: Optional[torch.Tensor] = None
|
|
|
|
# Maximum sequence length among encoder sequences
|
|
max_encoder_seq_len: Optional[int] = None
|
|
|
|
# Number of tokens input to encoder
|
|
num_encoder_tokens: Optional[int] = None
|
|
|
|
# Cross-attention memory-mapping data structures: slot mapping
|
|
# and block tables
|
|
cross_slot_mapping: Optional[torch.Tensor] = None
|
|
cross_block_tables: Optional[torch.Tensor] = None
|
|
|
|
def __post_init__(self):
|
|
# Set during the execution of the first attention op.
|
|
# It is a list because it is needed to set per prompt
|
|
# when alibi slopes is used. It is because of the limitation
|
|
# from xformer API.
|
|
# will not appear in the __repr__ and __init__
|
|
self.attn_bias: Optional[List[AttentionBias]] = None
|
|
self.encoder_attn_bias: Optional[List[AttentionBias]] = None
|
|
self.cross_attn_bias: Optional[List[AttentionBias]] = None
|
|
|
|
@property
|
|
def is_all_encoder_attn_metadata_set(self):
|
|
'''
|
|
All attention metadata required for encoder attention is set.
|
|
'''
|
|
return ((self.encoder_seq_lens is not None)
|
|
and (self.encoder_seq_lens_tensor is not None)
|
|
and (self.max_encoder_seq_len is not None))
|
|
|
|
@property
|
|
def is_all_cross_attn_metadata_set(self):
|
|
'''
|
|
All attention metadata required for enc/dec cross-attention is set.
|
|
|
|
Superset of encoder attention required metadata.
|
|
'''
|
|
return (self.is_all_encoder_attn_metadata_set
|
|
and (self.cross_slot_mapping is not None)
|
|
and (self.cross_block_tables is not None))
|
|
|
|
@property
|
|
def prefill_metadata(self) -> Optional["XFormersMetadata"]:
|
|
if self.num_prefills == 0:
|
|
return None
|
|
|
|
if self._cached_prefill_metadata is not None:
|
|
# Recover cached prefill-phase attention
|
|
# metadata structure
|
|
return self._cached_prefill_metadata
|
|
|
|
assert ((self.seq_lens is not None)
|
|
or (self.encoder_seq_lens is not None))
|
|
assert ((self.seq_lens_tensor is not None)
|
|
or (self.encoder_seq_lens_tensor is not None))
|
|
|
|
# Compute some attn_metadata fields which default to None
|
|
query_start_loc = (None if self.query_start_loc is None else
|
|
self.query_start_loc[:self.num_prefills + 1])
|
|
slot_mapping = (None if self.slot_mapping is None else
|
|
self.slot_mapping[:self.num_prefill_tokens])
|
|
seq_lens = (None if self.seq_lens is None else
|
|
self.seq_lens[:self.num_prefills])
|
|
seq_lens_tensor = (None if self.seq_lens_tensor is None else
|
|
self.seq_lens_tensor[:self.num_prefills])
|
|
context_lens_tensor = (None if self.context_lens_tensor is None else
|
|
self.context_lens_tensor[:self.num_prefills])
|
|
block_tables = (None if self.block_tables is None else
|
|
self.block_tables[:self.num_prefills])
|
|
|
|
# Construct & cache prefill-phase attention metadata structure
|
|
self._cached_prefill_metadata = XFormersMetadata(
|
|
num_prefills=self.num_prefills,
|
|
num_prefill_tokens=self.num_prefill_tokens,
|
|
num_decode_tokens=0,
|
|
slot_mapping=slot_mapping,
|
|
seq_lens=seq_lens,
|
|
seq_lens_tensor=seq_lens_tensor,
|
|
max_query_len=self.max_query_len,
|
|
max_prefill_seq_len=self.max_prefill_seq_len,
|
|
max_decode_seq_len=0,
|
|
query_start_loc=query_start_loc,
|
|
context_lens_tensor=context_lens_tensor,
|
|
block_tables=block_tables,
|
|
use_cuda_graph=False,
|
|
# Begin encoder & cross attn fields below...
|
|
encoder_seq_lens=self.encoder_seq_lens,
|
|
encoder_seq_lens_tensor=self.encoder_seq_lens_tensor,
|
|
max_encoder_seq_len=self.max_encoder_seq_len,
|
|
cross_slot_mapping=self.cross_slot_mapping,
|
|
cross_block_tables=self.cross_block_tables)
|
|
return self._cached_prefill_metadata
|
|
|
|
@property
|
|
def decode_metadata(self) -> Optional["XFormersMetadata"]:
|
|
if self.num_decode_tokens == 0:
|
|
return None
|
|
|
|
if self._cached_decode_metadata is not None:
|
|
# Recover cached decode-phase attention
|
|
# metadata structure
|
|
return self._cached_decode_metadata
|
|
assert ((self.seq_lens_tensor is not None)
|
|
or (self.encoder_seq_lens_tensor is not None))
|
|
|
|
# Compute some attn_metadata fields which default to None
|
|
slot_mapping = (None if self.slot_mapping is None else
|
|
self.slot_mapping[self.num_prefill_tokens:])
|
|
seq_lens_tensor = (None if self.seq_lens_tensor is None else
|
|
self.seq_lens_tensor[self.num_prefills:])
|
|
block_tables = (None if self.block_tables is None else
|
|
self.block_tables[self.num_prefills:])
|
|
|
|
# Construct & cache decode-phase attention metadata structure
|
|
self._cached_decode_metadata = XFormersMetadata(
|
|
num_prefills=0,
|
|
num_prefill_tokens=0,
|
|
num_decode_tokens=self.num_decode_tokens,
|
|
slot_mapping=slot_mapping,
|
|
seq_lens_tensor=seq_lens_tensor,
|
|
max_prefill_seq_len=0,
|
|
max_decode_seq_len=self.max_decode_seq_len,
|
|
block_tables=block_tables,
|
|
use_cuda_graph=self.use_cuda_graph,
|
|
# Begin encoder & cross attn fields below...
|
|
encoder_seq_lens=self.encoder_seq_lens,
|
|
encoder_seq_lens_tensor=self.encoder_seq_lens_tensor,
|
|
max_encoder_seq_len=self.max_encoder_seq_len,
|
|
cross_slot_mapping=self.cross_slot_mapping,
|
|
cross_block_tables=self.cross_block_tables)
|
|
return self._cached_decode_metadata
|
|
|
|
|
|
def _get_attn_bias(
|
|
attn_metadata: XFormersMetadata,
|
|
attn_type: AttentionType,
|
|
) -> Optional[AttentionBias]:
|
|
'''
|
|
Extract appropriate attention bias from attention metadata
|
|
according to attention type.
|
|
|
|
Arguments:
|
|
|
|
* attn_metadata: Attention metadata structure associated with attention
|
|
* attn_type: encoder attention, decoder self-attention,
|
|
encoder/decoder cross-attention
|
|
|
|
Returns:
|
|
* Appropriate attention bias value given the attention type
|
|
'''
|
|
|
|
if attn_type == AttentionType.DECODER:
|
|
return attn_metadata.attn_bias
|
|
elif attn_type == AttentionType.ENCODER:
|
|
return attn_metadata.encoder_attn_bias
|
|
else:
|
|
# attn_type == AttentionType.ENCODER_DECODER
|
|
return attn_metadata.cross_attn_bias
|
|
|
|
|
|
def _set_attn_bias(
|
|
attn_metadata: XFormersMetadata,
|
|
attn_bias: List[Optional[AttentionBias]],
|
|
attn_type: AttentionType,
|
|
) -> None:
|
|
'''
|
|
Update appropriate attention bias field of attention metadata,
|
|
according to attention type.
|
|
|
|
Arguments:
|
|
|
|
* attn_metadata: Attention metadata structure associated with attention
|
|
* attn_bias: The desired attention bias value
|
|
* attn_type: encoder attention, decoder self-attention,
|
|
encoder/decoder cross-attention
|
|
'''
|
|
|
|
if attn_type == AttentionType.DECODER:
|
|
attn_metadata.attn_bias = attn_bias
|
|
elif attn_type == AttentionType.ENCODER:
|
|
attn_metadata.encoder_attn_bias = attn_bias
|
|
elif attn_type == AttentionType.ENCODER_DECODER:
|
|
attn_metadata.cross_attn_bias = attn_bias
|
|
else:
|
|
raise AttributeError(f"Invalid attention type {str(attn_type)}")
|
|
|
|
|
|
def _get_seq_len_block_table_args(
|
|
attn_metadata: XFormersMetadata,
|
|
is_prompt: bool,
|
|
attn_type: AttentionType,
|
|
) -> tuple:
|
|
'''
|
|
The particular choice of sequence-length- and block-table-related
|
|
attributes which should be extracted from attn_metadata is dependent
|
|
on the type of attention operation.
|
|
|
|
Decoder attn -> select entirely decoder self-attention-related fields
|
|
Encoder/decoder cross-attn -> select encoder sequence lengths &
|
|
cross-attn block-tables fields
|
|
Encoder attn -> select encoder sequence lengths fields & no block tables
|
|
|
|
Arguments:
|
|
|
|
* attn_metadata: Attention metadata structure associated with attention op
|
|
* is_prompt: True if prefill, False otherwise
|
|
* attn_type: encoder attention, decoder self-attention,
|
|
encoder/decoder cross-attention
|
|
|
|
Returns:
|
|
|
|
* Appropriate sequence-lengths tensor
|
|
* Appropriate max sequence-length scalar
|
|
* Appropriate block tables (or None)
|
|
'''
|
|
|
|
if attn_type == AttentionType.DECODER:
|
|
# Decoder self-attention
|
|
# Choose max_seq_len based on whether we are in prompt_run
|
|
if is_prompt:
|
|
max_seq_len = attn_metadata.max_prefill_seq_len
|
|
else:
|
|
max_seq_len = attn_metadata.max_decode_seq_len
|
|
return (attn_metadata.seq_lens_tensor, max_seq_len,
|
|
attn_metadata.block_tables)
|
|
elif attn_type == AttentionType.ENCODER_DECODER:
|
|
# Enc/dec cross-attention KVs match encoder sequence length;
|
|
# cross-attention utilizes special "cross" block tables
|
|
return (attn_metadata.encoder_seq_lens_tensor,
|
|
attn_metadata.max_encoder_seq_len,
|
|
attn_metadata.cross_block_tables)
|
|
elif attn_type == AttentionType.ENCODER:
|
|
# No block tables associated with encoder attention
|
|
return (attn_metadata.encoder_seq_lens_tensor,
|
|
attn_metadata.max_encoder_seq_len, None)
|
|
else:
|
|
raise AttributeError(f"Invalid attention type {str(attn_type)}")
|
|
|
|
|
|
class XFormersMetadataBuilder(CommonMetadataBuilder[XFormersMetadata]):
|
|
|
|
_metadata_cls = XFormersMetadata
|
|
|
|
|
|
class XFormersImpl(AttentionImpl[XFormersMetadata]):
|
|
"""
|
|
If the input tensors contain prompt tokens, the layout is as follows:
|
|
|<--------------- num_prefill_tokens ----------------->|
|
|
|<--prefill_0-->|<--prefill_1-->|...|<--prefill_N-1--->|
|
|
|
|
Otherwise, the layout is as follows:
|
|
|<----------------- num_decode_tokens ------------------>|
|
|
|<--decode_0-->|..........|<--decode_M-1-->|<--padding-->|
|
|
|
|
Generation tokens can contain padding when cuda-graph is used.
|
|
Currently, prompt tokens don't contain any padding.
|
|
|
|
The prompts might have different lengths, while the generation tokens
|
|
always have length 1.
|
|
|
|
If chunked prefill is enabled, prefill tokens and decode tokens can be
|
|
batched together in a flattened 1D query.
|
|
|
|
|<----- num_prefill_tokens ---->|<------- num_decode_tokens --------->|
|
|
|<-prefill_0->|...|<-prefill_N-1->|<--decode_0-->|...|<--decode_M-1-->|
|
|
|
|
Currently, cuda graph is disabled for chunked prefill, meaning there's no
|
|
padding between prefill and decode tokens.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_heads: int,
|
|
head_size: int,
|
|
scale: float,
|
|
num_kv_heads: int,
|
|
alibi_slopes: Optional[List[float]],
|
|
sliding_window: Optional[int],
|
|
kv_cache_dtype: str,
|
|
blocksparse_params: Optional[Dict[str, Any]] = None,
|
|
logits_soft_cap: Optional[float] = None,
|
|
) -> None:
|
|
if blocksparse_params is not None:
|
|
raise ValueError(
|
|
"XFormers does not support block-sparse attention.")
|
|
if logits_soft_cap is not None:
|
|
raise ValueError(
|
|
"XFormers does not support attention logits soft capping.")
|
|
self.num_heads = num_heads
|
|
self.head_size = head_size
|
|
self.scale = float(scale)
|
|
self.num_kv_heads = num_kv_heads
|
|
if alibi_slopes is not None:
|
|
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
|
|
self.alibi_slopes = alibi_slopes
|
|
self.sliding_window = sliding_window
|
|
self.kv_cache_dtype = kv_cache_dtype
|
|
|
|
assert self.num_heads % self.num_kv_heads == 0
|
|
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
|
|
|
suppored_head_sizes = PagedAttention.get_supported_head_sizes()
|
|
if head_size not in suppored_head_sizes:
|
|
raise ValueError(
|
|
f"Head size {head_size} is not supported by PagedAttention. "
|
|
f"Supported head sizes are: {suppored_head_sizes}.")
|
|
|
|
def forward(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: Optional[torch.Tensor],
|
|
value: Optional[torch.Tensor],
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: "XFormersMetadata",
|
|
k_scale: float = 1.0,
|
|
v_scale: float = 1.0,
|
|
attn_type: AttentionType = AttentionType.DECODER,
|
|
) -> torch.Tensor:
|
|
"""Forward pass with xFormers and PagedAttention.
|
|
|
|
For decoder-only models: query, key and value must be non-None.
|
|
|
|
For encoder/decoder models:
|
|
* XFormersImpl.forward() may be invoked for both self- and cross-
|
|
attention layers.
|
|
* For self-attention: query, key and value must be non-None.
|
|
* For cross-attention:
|
|
* Query must be non-None
|
|
* During prefill, key and value must be non-None; key and value
|
|
get cached for use during decode.
|
|
* During decode, key and value may be None, since:
|
|
(1) key and value tensors were cached during prefill, and
|
|
(2) cross-attention key and value tensors do not grow during
|
|
decode
|
|
|
|
A note on how the attn_type (attention type enum) argument impacts
|
|
attention forward() behavior:
|
|
|
|
* DECODER: normal decoder-only behavior;
|
|
use decoder self-attention block table
|
|
* ENCODER: no KV caching; pass encoder sequence
|
|
attributes (encoder_seq_lens/encoder_seq_lens_tensor/
|
|
max_encoder_seq_len) to kernel, in lieu of decoder
|
|
sequence attributes (seq_lens/seq_lens_tensor/max_seq_len)
|
|
* ENCODER_DECODER: cross-attention behavior;
|
|
use cross-attention block table for caching KVs derived
|
|
from encoder hidden states; since KV sequence lengths
|
|
will match encoder sequence lengths, pass encoder sequence
|
|
attributes to kernel (encoder_seq_lens/encoder_seq_lens_tensor/
|
|
max_encoder_seq_len)
|
|
|
|
Args:
|
|
query: shape = [num_tokens, num_heads * head_size]
|
|
key: shape = [num_tokens, num_kv_heads * head_size]
|
|
value: shape = [num_tokens, num_kv_heads * head_size]
|
|
kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size]
|
|
NOTE: kv_cache will be an empty tensor with shape [0]
|
|
for profiling run.
|
|
attn_metadata: Metadata for attention.
|
|
attn_type: Select attention type, between encoder attention,
|
|
decoder self-attention, or encoder/decoder cross-
|
|
attention. Defaults to decoder self-attention,
|
|
which is the vLLM default generally
|
|
Returns:
|
|
shape = [num_tokens, num_heads * head_size]
|
|
"""
|
|
|
|
# Check that appropriate attention metadata attributes are
|
|
# selected for the desired attention type
|
|
if (attn_type == AttentionType.ENCODER
|
|
and (not attn_metadata.is_all_encoder_attn_metadata_set)):
|
|
raise AttributeError("Encoder attention requires setting "
|
|
"encoder metadata attributes.")
|
|
elif (attn_type == AttentionType.ENCODER_DECODER
|
|
and (not attn_metadata.is_all_cross_attn_metadata_set)):
|
|
raise AttributeError("Encoder/decoder cross-attention "
|
|
"requires setting cross-attention "
|
|
"metadata attributes.")
|
|
|
|
query = query.view(-1, self.num_heads, self.head_size)
|
|
if key is not None:
|
|
assert value is not None
|
|
key = key.view(-1, self.num_kv_heads, self.head_size)
|
|
value = value.view(-1, self.num_kv_heads, self.head_size)
|
|
else:
|
|
assert value is None
|
|
|
|
# Self-attention vs. cross-attention will impact
|
|
# which KV cache memory-mapping & which
|
|
# seqlen datastructures we utilize
|
|
|
|
if (attn_type != AttentionType.ENCODER and kv_cache.numel() > 0):
|
|
# KV-cache during decoder-self- or
|
|
# encoder-decoder-cross-attention, but not
|
|
# during encoder attention.
|
|
#
|
|
# Even if there are no new key/value pairs to cache,
|
|
# we still need to break out key_cache and value_cache
|
|
# i.e. for later use by paged attention
|
|
key_cache, value_cache = PagedAttention.split_kv_cache(
|
|
kv_cache, self.num_kv_heads, self.head_size)
|
|
|
|
if (key is not None) and (value is not None):
|
|
|
|
if attn_type == AttentionType.ENCODER_DECODER:
|
|
# Update cross-attention KV cache (prefill-only)
|
|
# During cross-attention decode, key & value will be None,
|
|
# preventing this IF-statement branch from running
|
|
updated_slot_mapping = attn_metadata.cross_slot_mapping
|
|
else:
|
|
# Update self-attention KV cache (prefill/decode)
|
|
updated_slot_mapping = attn_metadata.slot_mapping
|
|
|
|
# Reshape the input keys and values and store them in the cache.
|
|
# If kv_cache is not provided, the new key and value tensors are
|
|
# not cached. This happens during the initial memory
|
|
# profiling run.
|
|
PagedAttention.write_to_paged_cache(key, value, key_cache,
|
|
value_cache,
|
|
updated_slot_mapping,
|
|
self.kv_cache_dtype,
|
|
k_scale, v_scale)
|
|
|
|
if attn_type != AttentionType.ENCODER:
|
|
# Decoder self-attention supports chunked prefill.
|
|
# Encoder/decoder cross-attention requires no chunked
|
|
# prefill (100% prefill or 100% decode tokens, no mix)
|
|
num_prefill_tokens = attn_metadata.num_prefill_tokens
|
|
num_decode_tokens = attn_metadata.num_decode_tokens
|
|
else:
|
|
# Encoder attention - chunked prefill is not applicable;
|
|
# derive token-count from query shape & and treat them
|
|
# as 100% prefill tokens
|
|
assert attn_metadata.num_encoder_tokens is not None
|
|
num_prefill_tokens = attn_metadata.num_encoder_tokens
|
|
num_decode_tokens = 0
|
|
|
|
if attn_type == AttentionType.DECODER:
|
|
# Only enforce this shape-constraint for decoder
|
|
# self-attention
|
|
assert key.shape[0] == num_prefill_tokens + num_decode_tokens
|
|
assert value.shape[0] == num_prefill_tokens + num_decode_tokens
|
|
|
|
output = torch.empty_like(query)
|
|
# Query for decode. KV is not needed because it is already cached.
|
|
decode_query = query[num_prefill_tokens:]
|
|
# QKV for prefill.
|
|
query = query[:num_prefill_tokens]
|
|
if key is not None and value is not None:
|
|
key = key[:num_prefill_tokens]
|
|
value = value[:num_prefill_tokens]
|
|
|
|
assert query.shape[0] == num_prefill_tokens
|
|
assert decode_query.shape[0] == num_decode_tokens
|
|
|
|
if prefill_meta := attn_metadata.prefill_metadata:
|
|
# Prompt run.
|
|
if kv_cache.numel() == 0 or prefill_meta.block_tables.numel() == 0:
|
|
# normal attention.
|
|
# block tables are empty if the prompt does not have a cached
|
|
# prefix.
|
|
out = self._run_memory_efficient_xformers_forward(
|
|
query, key, value, prefill_meta, attn_type=attn_type)
|
|
assert out.shape == output[:num_prefill_tokens].shape
|
|
output[:num_prefill_tokens] = out
|
|
else:
|
|
|
|
assert prefill_meta.query_start_loc is not None
|
|
assert prefill_meta.max_query_len is not None
|
|
|
|
# prefix-enabled attention
|
|
# TODO(Hai) this triton kernel has regression issue (broke) to
|
|
# deal with different data types between KV and FP8 KV cache,
|
|
# to be addressed separately.
|
|
out = PagedAttention.forward_prefix(
|
|
query,
|
|
key,
|
|
value,
|
|
self.kv_cache_dtype,
|
|
key_cache,
|
|
value_cache,
|
|
prefill_meta.block_tables,
|
|
prefill_meta.query_start_loc,
|
|
prefill_meta.seq_lens_tensor,
|
|
prefill_meta.context_lens_tensor,
|
|
prefill_meta.max_query_len,
|
|
self.alibi_slopes,
|
|
self.sliding_window,
|
|
k_scale,
|
|
v_scale,
|
|
)
|
|
assert output[:num_prefill_tokens].shape == out.shape
|
|
output[:num_prefill_tokens] = out
|
|
|
|
if decode_meta := attn_metadata.decode_metadata:
|
|
|
|
(
|
|
seq_lens_arg,
|
|
max_seq_len_arg,
|
|
block_tables_arg,
|
|
) = _get_seq_len_block_table_args(decode_meta, False, attn_type)
|
|
|
|
output[num_prefill_tokens:] = PagedAttention.forward_decode(
|
|
decode_query,
|
|
key_cache,
|
|
value_cache,
|
|
block_tables_arg,
|
|
seq_lens_arg,
|
|
max_seq_len_arg,
|
|
self.kv_cache_dtype,
|
|
self.num_kv_heads,
|
|
self.scale,
|
|
self.alibi_slopes,
|
|
k_scale,
|
|
v_scale,
|
|
)
|
|
|
|
# Reshape the output tensor.
|
|
return output.view(-1, self.num_heads * self.head_size)
|
|
|
|
def _run_memory_efficient_xformers_forward(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
attn_metadata: XFormersMetadata,
|
|
attn_type: AttentionType = AttentionType.DECODER,
|
|
) -> torch.Tensor:
|
|
"""Attention for 1D query of multiple prompts. Multiple prompt
|
|
tokens are flattened in to `query` input.
|
|
|
|
See https://facebookresearch.github.io/xformers/components/ops.html
|
|
for API spec.
|
|
|
|
Args:
|
|
output: shape = [num_prefill_tokens, num_heads, head_size]
|
|
query: shape = [num_prefill_tokens, num_heads, head_size]
|
|
key: shape = [num_prefill_tokens, num_kv_heads, head_size]
|
|
value: shape = [num_prefill_tokens, num_kv_heads, head_size]
|
|
attn_metadata: Metadata for attention.
|
|
attn_type: Select attention type, between encoder attention,
|
|
decoder self-attention, or encoder/decoder cross-
|
|
attention. Defaults to decoder self-attention,
|
|
which is the vLLM default generally
|
|
"""
|
|
|
|
original_query = query
|
|
if self.num_kv_heads != self.num_heads:
|
|
# GQA/MQA requires the shape [B, M, G, H, K].
|
|
# Note that the output also has the same shape (which is different
|
|
# from a spec from the doc).
|
|
query = query.view(query.shape[0], self.num_kv_heads,
|
|
self.num_queries_per_kv, query.shape[-1])
|
|
key = key[:, :,
|
|
None, :].expand(key.shape[0], self.num_kv_heads,
|
|
self.num_queries_per_kv, key.shape[-1])
|
|
value = value[:, :,
|
|
None, :].expand(value.shape[0], self.num_kv_heads,
|
|
self.num_queries_per_kv,
|
|
value.shape[-1])
|
|
# Set attention bias if not provided. This typically happens at
|
|
# the very attention layer of every iteration.
|
|
# FIXME(woosuk): This is a hack.
|
|
attn_bias = _get_attn_bias(attn_metadata, attn_type)
|
|
if attn_bias is None:
|
|
if self.alibi_slopes is None:
|
|
if (attn_type == AttentionType.ENCODER_DECODER):
|
|
assert attn_metadata.seq_lens is not None
|
|
assert attn_metadata.encoder_seq_lens is not None
|
|
|
|
# Default enc/dec cross-attention mask is non-causal
|
|
attn_bias = BlockDiagonalMask.from_seqlens(
|
|
attn_metadata.seq_lens, attn_metadata.encoder_seq_lens)
|
|
elif attn_type == AttentionType.ENCODER:
|
|
assert attn_metadata.encoder_seq_lens is not None
|
|
|
|
# Default encoder self-attention mask is non-causal
|
|
attn_bias = BlockDiagonalMask.from_seqlens(
|
|
attn_metadata.encoder_seq_lens)
|
|
else:
|
|
assert attn_metadata.seq_lens is not None
|
|
|
|
# Default decoder self-attention mask is causal
|
|
attn_bias = BlockDiagonalCausalMask.from_seqlens(
|
|
attn_metadata.seq_lens)
|
|
if self.sliding_window is not None:
|
|
attn_bias = attn_bias.make_local_attention(
|
|
self.sliding_window)
|
|
attn_bias = [attn_bias]
|
|
else:
|
|
assert attn_metadata.seq_lens is not None
|
|
attn_bias = _make_alibi_bias(self.alibi_slopes,
|
|
self.num_kv_heads, query.dtype,
|
|
attn_metadata.seq_lens)
|
|
|
|
_set_attn_bias(attn_metadata, attn_bias, attn_type)
|
|
|
|
# No alibi slopes.
|
|
# TODO(woosuk): Too many view operations. Let's try to reduce
|
|
# them in the future for code readability.
|
|
if self.alibi_slopes is None:
|
|
# Add the batch dimension.
|
|
query = query.unsqueeze(0)
|
|
key = key.unsqueeze(0)
|
|
value = value.unsqueeze(0)
|
|
out = xops.memory_efficient_attention_forward(
|
|
query,
|
|
key,
|
|
value,
|
|
attn_bias=attn_bias[0],
|
|
p=0.0,
|
|
scale=self.scale)
|
|
return out.view_as(original_query)
|
|
|
|
# Attention with alibi slopes.
|
|
# FIXME(woosuk): Because xformers does not support dynamic sequence
|
|
# lengths with custom attention bias, we process each prompt one by
|
|
# one. This is inefficient, especially when we have many short prompts.
|
|
assert attn_metadata.seq_lens is not None
|
|
output = torch.empty_like(original_query)
|
|
start = 0
|
|
for i, seq_len in enumerate(attn_metadata.seq_lens):
|
|
end = start + seq_len
|
|
out = xops.memory_efficient_attention_forward(
|
|
query[None, start:end],
|
|
key[None, start:end],
|
|
value[None, start:end],
|
|
attn_bias=attn_bias[i],
|
|
p=0.0,
|
|
scale=self.scale)
|
|
# TODO(woosuk): Unnecessary copy. Optimize.
|
|
output[start:end].copy_(out.view_as(original_query[start:end]))
|
|
start += seq_len
|
|
return output
|
|
|
|
|
|
def _make_alibi_bias(
|
|
alibi_slopes: torch.Tensor,
|
|
num_kv_heads: int,
|
|
dtype: torch.dtype,
|
|
seq_lens: List[int],
|
|
) -> List[AttentionBias]:
|
|
attn_biases: List[AttentionBias] = []
|
|
for seq_len in seq_lens:
|
|
bias = torch.arange(seq_len, dtype=dtype)
|
|
# NOTE(zhuohan): HF uses
|
|
# `bias = bias[None, :].repeat(seq_len, 1)`
|
|
# here. We find that both biases give the same results, but
|
|
# the bias below more accurately follows the original ALiBi
|
|
# paper.
|
|
# Calculate a matrix where each element represents ith element- jth
|
|
# element.
|
|
bias = bias[None, :] - bias[:, None]
|
|
|
|
padded_len = (seq_len + 7) // 8 * 8
|
|
num_heads = alibi_slopes.shape[0]
|
|
bias = torch.empty(
|
|
1, # batch size
|
|
num_heads,
|
|
seq_len,
|
|
padded_len,
|
|
device=alibi_slopes.device,
|
|
dtype=dtype,
|
|
)[:, :, :, :seq_len].copy_(bias)
|
|
bias.mul_(alibi_slopes[:, None, None])
|
|
if num_heads != num_kv_heads:
|
|
bias = bias.unflatten(1, (num_kv_heads, num_heads // num_kv_heads))
|
|
attn_biases.append(LowerTriangularMaskWithTensorBias(bias))
|
|
|
|
return attn_biases
|