vllm/vllm/v1/worker/worker_base.py
Wentao Ye 56669c1f29
[CI] Fix mypy for vllm/v1/worker (#29037)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-11-21 11:36:07 +08:00

378 lines
14 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
from collections.abc import Callable
from typing import TYPE_CHECKING, Any, TypeVar
import torch
import torch.nn as nn
from vllm.config import VllmConfig, set_current_vllm_config
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.cache import worker_receiver_cache_from_config
from vllm.utils.import_utils import resolve_obj_by_qualname
from vllm.utils.system_utils import update_environment_variables
from vllm.v1.kv_cache_interface import KVCacheSpec
from vllm.v1.serial_utils import run_method
if TYPE_CHECKING:
from vllm.v1.core.sched.output import GrammarOutput, SchedulerOutput
from vllm.v1.outputs import AsyncModelRunnerOutput, ModelRunnerOutput
else:
SchedulerOutput = object
GrammarOutput = object
AsyncModelRunnerOutput = object
ModelRunnerOutput = object
logger = init_logger(__name__)
_R = TypeVar("_R")
class WorkerBase:
"""Worker interface that allows vLLM to cleanly separate implementations for
different hardware. Also abstracts control plane communication, e.g., to
communicate request metadata to other workers.
"""
def __init__(
self,
vllm_config: VllmConfig,
local_rank: int,
rank: int,
distributed_init_method: str,
is_driver_worker: bool = False,
) -> None:
"""
Initialize common worker components.
Args:
vllm_config: Complete vLLM configuration
local_rank: Local device index
rank: Global rank in distributed setup
distributed_init_method: Distributed initialization method
is_driver_worker: Whether this worker handles driver
responsibilities
"""
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
self.cache_config = vllm_config.cache_config
self.lora_config = vllm_config.lora_config
self.load_config = vllm_config.load_config
self.parallel_config = vllm_config.parallel_config
self.scheduler_config = vllm_config.scheduler_config
self.device_config = vllm_config.device_config
self.speculative_config = vllm_config.speculative_config
self.observability_config = vllm_config.observability_config
self.kv_transfer_config = vllm_config.kv_transfer_config
self.compilation_config = vllm_config.compilation_config
from vllm.platforms import current_platform
self.current_platform = current_platform
self.parallel_config.rank = rank
self.local_rank = local_rank
self.rank = rank
self.distributed_init_method = distributed_init_method
self.is_driver_worker = is_driver_worker
# Device and model state
self.device: torch.device | None = None
self.model_runner: nn.Module | None = None
def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
"""Get specifications for KV cache implementation."""
raise NotImplementedError
def compile_or_warm_up_model(self) -> None:
"""Prepare model for execution through compilation/warmup."""
raise NotImplementedError
def check_health(self) -> None:
"""Basic health check (override for device-specific checks)."""
return
def init_device(self) -> None:
"""Initialize device state, such as loading the model or other on-device
memory allocations.
"""
raise NotImplementedError
def initialize_cache(self, num_gpu_blocks: int, num_cpu_blocks: int) -> None:
"""Initialize the KV cache with the given size in blocks."""
raise NotImplementedError
def reset_mm_cache(self) -> None:
reset_fn = getattr(self.model_runner, "reset_mm_cache", None)
if callable(reset_fn):
reset_fn()
def get_model(self) -> nn.Module:
raise NotImplementedError
def apply_model(self, fn: Callable[[nn.Module], _R]) -> _R:
"""Apply a function on the model inside this worker."""
return fn(self.get_model())
def load_model(self) -> None:
"""Load model onto target device."""
raise NotImplementedError
def execute_model(
self, scheduler_output: SchedulerOutput
) -> ModelRunnerOutput | None:
"""If this method returns None, sample_tokens should be called immediately after
to obtain the ModelRunnerOutput.
Note that this design may be changed in future if/when structured outputs
parallelism is re-architected.
"""
raise NotImplementedError
def sample_tokens(
self, grammar_output: GrammarOutput
) -> ModelRunnerOutput | AsyncModelRunnerOutput:
"""Should be called immediately after execute_model iff it returned None."""
raise NotImplementedError
def get_cache_block_size_bytes(self) -> int:
"""Return the size of a single cache block, in bytes. Used in
speculative decoding.
"""
raise NotImplementedError
def add_lora(self, lora_request: LoRARequest) -> bool:
raise NotImplementedError
def remove_lora(self, lora_id: int) -> bool:
raise NotImplementedError
def pin_lora(self, lora_id: int) -> bool:
raise NotImplementedError
def list_loras(self) -> set[int]:
raise NotImplementedError
@property
def vocab_size(self) -> int:
"""Get vocabulary size from model configuration."""
return self.model_config.get_vocab_size()
def shutdown(self) -> None:
"""Clean up resources held by the worker."""
return
class WorkerWrapperBase:
"""
This class represents one process in an executor/engine. It is responsible
for lazily initializing the worker and handling the worker's lifecycle.
We first instantiate the WorkerWrapper, which remembers the worker module
and class name. Then, when we call `update_environment_variables`, and the
real initialization happens in `init_worker`.
"""
def __init__(
self,
vllm_config: VllmConfig,
rpc_rank: int = 0,
global_rank: int | None = None,
) -> None:
"""
Initialize the worker wrapper with the given vllm_config and rpc_rank.
Note: rpc_rank is the rank of the worker in the executor. In most cases,
it is also the rank of the worker in the distributed group. However,
when multiple executors work together, they can be different.
e.g. in the case of SPMD-style offline inference with TP=2,
users can launch 2 engines/executors, each with only 1 worker.
All workers have rpc_rank=0, but they have different ranks in the TP
group.
"""
self.rpc_rank = rpc_rank
self.global_rank = self.rpc_rank if global_rank is None else global_rank
self.worker: WorkerBase | None = None
# do not store this `vllm_config`, `init_worker` will set the final
# one.
# TODO: investigate if we can remove this field in `WorkerWrapperBase`,
# `init_cached_hf_modules` should be unnecessary now.
self.vllm_config: VllmConfig | None = None
# `model_config` can be None in tests
model_config = vllm_config.model_config
if model_config and model_config.trust_remote_code:
# note: lazy import to avoid importing torch before initializing
from vllm.utils.import_utils import init_cached_hf_modules
init_cached_hf_modules()
def shutdown(self) -> None:
if self.worker is not None:
self.worker.shutdown()
def adjust_rank(self, rank_mapping: dict[int, int]) -> None:
"""
Adjust the rpc_rank based on the given mapping.
It is only used during the initialization of the executor,
to adjust the rpc_rank of workers after we create all workers.
"""
if self.rpc_rank in rank_mapping:
self.rpc_rank = rank_mapping[self.rpc_rank]
def update_environment_variables(
self,
envs_list: list[dict[str, str]],
) -> None:
envs = envs_list[self.rpc_rank]
key = "CUDA_VISIBLE_DEVICES"
if key in envs and key in os.environ:
# overwriting CUDA_VISIBLE_DEVICES is desired behavior
# suppress the warning in `update_environment_variables`
del os.environ[key]
update_environment_variables(envs)
def init_worker(self, all_kwargs: list[dict[str, Any]]) -> None:
"""
Here we inject some common logic before initializing the worker.
Arguments are passed to the worker class constructor.
"""
kwargs = all_kwargs[self.rpc_rank]
self.vllm_config = kwargs.get("vllm_config")
assert self.vllm_config is not None, (
"vllm_config is required to initialize the worker"
)
self.vllm_config.enable_trace_function_call_for_thread()
from vllm.plugins import load_general_plugins
load_general_plugins()
if isinstance(self.vllm_config.parallel_config.worker_cls, str):
worker_class = resolve_obj_by_qualname(
self.vllm_config.parallel_config.worker_cls
)
else:
raise ValueError(
"passing worker_cls is no longer supported. Please pass keep the class in a separate module and pass the qualified name of the class as a string." # noqa: E501
)
if self.vllm_config.parallel_config.worker_extension_cls:
worker_extension_cls = resolve_obj_by_qualname(
self.vllm_config.parallel_config.worker_extension_cls
)
extended_calls = []
if worker_extension_cls not in worker_class.__bases__:
# check any conflicts between worker and worker_extension_cls
for attr in dir(worker_extension_cls):
if attr.startswith("__"):
continue
assert not hasattr(worker_class, attr), (
f"Worker class {worker_class} already has an attribute"
f" {attr}, which conflicts with the worker"
f" extension class {worker_extension_cls}."
)
if callable(getattr(worker_extension_cls, attr)):
extended_calls.append(attr)
# dynamically inherit the worker extension class
worker_class.__bases__ = worker_class.__bases__ + (
worker_extension_cls,
)
logger.info(
"Injected %s into %s for extended collective_rpc calls %s",
worker_extension_cls,
worker_class,
extended_calls,
)
shared_worker_lock = kwargs.pop("shared_worker_lock", None)
if shared_worker_lock is None:
msg = (
"Missing `shared_worker_lock` argument from executor. "
"This argument is needed for mm_processor_cache_type='shm'."
)
mm_config = self.vllm_config.model_config.multimodal_config
if mm_config and mm_config.mm_processor_cache_type == "shm":
raise ValueError(msg)
else:
logger.warning_once(msg)
self.mm_receiver_cache = None
else:
self.mm_receiver_cache = worker_receiver_cache_from_config(
self.vllm_config,
MULTIMODAL_REGISTRY,
shared_worker_lock,
)
with set_current_vllm_config(self.vllm_config):
# To make vLLM config available during worker initialization
self.worker = worker_class(**kwargs)
assert self.worker is not None
def initialize_from_config(self, kv_cache_configs: list[Any]) -> None:
kv_cache_config = kv_cache_configs[self.global_rank]
assert self.vllm_config is not None
with set_current_vllm_config(self.vllm_config):
self.worker.initialize_from_config(kv_cache_config) # type: ignore
def init_device(self):
assert self.vllm_config is not None
with set_current_vllm_config(self.vllm_config):
# To make vLLM config available during device initialization
self.worker.init_device() # type: ignore
def execute_method(self, method: str | bytes, *args, **kwargs):
try:
# method resolution order:
# if a method is defined in this class, it will be called directly.
# otherwise, since we define `__getattr__` and redirect attribute
# query to `self.worker`, the method will be called on the worker.
return run_method(self, method, args, kwargs)
except Exception as e:
# if the driver worker also execute methods,
# exceptions in the rest worker may cause deadlock in rpc like ray
# see https://github.com/vllm-project/vllm/issues/3455
# print the error and inform the user to solve the error
msg = (
f"Error executing method {method!r}. "
"This might cause deadlock in distributed execution."
)
logger.exception(msg)
raise e
def __getattr__(self, attr: str):
return getattr(self.worker, attr)
def _apply_mm_cache(self, scheduler_output: SchedulerOutput) -> None:
mm_cache = self.mm_receiver_cache
if mm_cache is None:
return
for req_data in scheduler_output.scheduled_new_reqs:
req_data.mm_features = mm_cache.get_and_update_features(
req_data.mm_features
)
def execute_model(
self,
scheduler_output: SchedulerOutput,
*args,
**kwargs,
) -> ModelRunnerOutput | None:
self._apply_mm_cache(scheduler_output)
assert self.worker is not None
return self.worker.execute_model(scheduler_output, *args, **kwargs)
def reset_mm_cache(self) -> None:
mm_receiver_cache = self.mm_receiver_cache
if mm_receiver_cache is not None:
mm_receiver_cache.clear_cache()
assert self.worker is not None
self.worker.reset_mm_cache()