mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 05:45:00 +08:00
Signed-off-by: Bill Nell <bnell@redhat.com> Co-authored-by: Michael Goin <mgoin64@gmail.com>
148 lines
5.7 KiB
Python
148 lines
5.7 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import pytest
|
|
import torch
|
|
|
|
from tests.kernels.moe.utils import make_test_weights
|
|
from tests.kernels.quantization.nvfp4_utils import (FLOAT4_E2M1_MAX,
|
|
FLOAT8_E4M3_MAX,
|
|
dequantize_nvfp4_to_dtype)
|
|
from tests.kernels.utils import torch_moe
|
|
from vllm import _custom_ops as ops
|
|
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
|
|
from vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe import (
|
|
FlashInferExperts, is_valid_flashinfer_cutlass_fused_moe)
|
|
from vllm.model_executor.layers.fused_moe.fused_moe import fused_topk
|
|
from vllm.model_executor.layers.fused_moe.modular_kernel import (
|
|
FusedMoEModularKernel)
|
|
from vllm.model_executor.layers.fused_moe.prepare_finalize import (
|
|
MoEPrepareAndFinalizeNoEP)
|
|
from vllm.platforms import current_platform
|
|
from vllm.utils.flashinfer import has_flashinfer_cutlass_fused_moe
|
|
|
|
if not has_flashinfer_cutlass_fused_moe(
|
|
) or not current_platform.has_device_capability(100):
|
|
pytest.skip("Requires flashinfer_cutlass_fused_moe and nvfp4 support",
|
|
allow_module_level=True)
|
|
|
|
MNK_FACTORS = [
|
|
(2, 1024, 1024),
|
|
(2, 1024, 1536),
|
|
(2, 3072, 1024),
|
|
(2, 3072, 1536),
|
|
(64, 1024, 1024),
|
|
(64, 1024, 1536),
|
|
(64, 3072, 1024),
|
|
(64, 2048, 1536),
|
|
(224, 1024, 1024),
|
|
(224, 1024, 1536),
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("m,n,k", MNK_FACTORS)
|
|
@pytest.mark.parametrize("e", [40, 64, 256])
|
|
#@pytest.mark.parametrize("e", [128, 256])
|
|
@pytest.mark.parametrize("topk", [1, 6, 8])
|
|
@pytest.mark.parametrize("dtype", [torch.half, torch.bfloat16])
|
|
@torch.inference_mode()
|
|
def test_flashinfer_fp4_moe_no_graph(m: int, n: int, k: int, e: int, topk: int,
|
|
dtype: torch.dtype):
|
|
current_platform.seed_everything(7)
|
|
with set_current_vllm_config(
|
|
VllmConfig(parallel_config=ParallelConfig(
|
|
pipeline_parallel_size=1))):
|
|
|
|
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
|
|
|
|
quant_blocksize = 16
|
|
|
|
(_, w1_q, w1_blockscale,
|
|
w1_gs), (_, w2_q, w2_blockscale, w2_gs) = make_test_weights(
|
|
e,
|
|
n,
|
|
k,
|
|
in_dtype=dtype,
|
|
quant_dtype="nvfp4",
|
|
block_shape=None, # use quant_blocksize?
|
|
per_act_token_quant=False,
|
|
)
|
|
|
|
score = torch.randn((m, e), device="cuda", dtype=dtype)
|
|
topk_weights, topk_ids, _ = fused_topk(a,
|
|
score,
|
|
topk,
|
|
renormalize=False)
|
|
|
|
a1_gs = torch.ones((e, ), device="cuda", dtype=torch.float32)
|
|
a2_gs = torch.ones((e, ), device="cuda", dtype=torch.float32)
|
|
|
|
assert is_valid_flashinfer_cutlass_fused_moe(a, w1_q, w2_q)
|
|
|
|
assert w1_gs is not None
|
|
assert w2_gs is not None
|
|
assert w1_blockscale is not None
|
|
assert w2_blockscale is not None
|
|
|
|
flashinfer_experts = FusedMoEModularKernel(
|
|
MoEPrepareAndFinalizeNoEP(),
|
|
FlashInferExperts(
|
|
a1_gscale=a1_gs,
|
|
g1_alphas=(1 / w1_gs),
|
|
a2_gscale=a2_gs,
|
|
g2_alphas=(1 / w2_gs),
|
|
out_dtype=dtype,
|
|
quant_dtype="nvfp4",
|
|
))
|
|
|
|
flashinfer_output = flashinfer_experts(
|
|
hidden_states=a,
|
|
w1=w1_q,
|
|
w1_scale=w1_blockscale,
|
|
w2=w2_q,
|
|
w2_scale=w2_blockscale,
|
|
a1_scale=a1_gs,
|
|
a2_scale=a2_gs,
|
|
topk_weights=topk_weights,
|
|
topk_ids=topk_ids,
|
|
)
|
|
|
|
# Reference check:
|
|
a_global_scale = ((FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX) /
|
|
torch.amax(a.flatten(), dim=-1)).to(torch.float32)
|
|
a_fp4, a_scale_interleaved = ops.scaled_fp4_quant(a, a_global_scale)
|
|
_, m_k = a_fp4.shape
|
|
a_in_dtype = dequantize_nvfp4_to_dtype(a_fp4,
|
|
a_scale_interleaved,
|
|
a_global_scale,
|
|
dtype=a.dtype,
|
|
device=a.device,
|
|
block_size=quant_blocksize)
|
|
|
|
w1_d = torch.empty((e, 2 * n, k), device="cuda", dtype=dtype)
|
|
w2_d = torch.empty((e, k, n), device="cuda", dtype=dtype)
|
|
|
|
for idx in range(0, e):
|
|
w1_d[idx] = dequantize_nvfp4_to_dtype(w1_q[idx],
|
|
w1_blockscale[idx],
|
|
w1_gs[idx],
|
|
dtype=dtype,
|
|
device=w1_q.device,
|
|
block_size=quant_blocksize)
|
|
w2_d[idx] = dequantize_nvfp4_to_dtype(w2_q[idx],
|
|
w2_blockscale[idx],
|
|
w2_gs[idx],
|
|
dtype=dtype,
|
|
device=w2_q.device,
|
|
block_size=quant_blocksize)
|
|
|
|
torch_output = torch_moe(a_in_dtype, w1_d, w2_d, score, topk)
|
|
|
|
torch.testing.assert_close(torch_output,
|
|
flashinfer_output,
|
|
atol=1e-1,
|
|
rtol=1e-1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_flashinfer_fp4_moe_no_graph((2, 1024, 1024), 40, 1, torch.half)
|