mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 07:45:29 +08:00
Signed-off-by: Bill Nell <bnell@redhat.com> Co-authored-by: Michael Goin <mgoin64@gmail.com>
285 lines
9.9 KiB
Python
285 lines
9.9 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
from typing import Optional, Union
|
|
|
|
import torch
|
|
|
|
import vllm._custom_ops as ops
|
|
from tests.kernels.quant_utils import per_block_cast_to_int8
|
|
from tests.kernels.quantization.nvfp4_utils import (FLOAT4_E2M1_MAX,
|
|
FLOAT8_E4M3_MAX)
|
|
from vllm.model_executor.layers.fused_moe import fused_experts
|
|
from vllm.model_executor.layers.fused_moe.fused_batched_moe import (
|
|
BatchedPrepareAndFinalize, BatchedTritonExperts, NaiveBatchedExperts)
|
|
from vllm.model_executor.layers.fused_moe.modular_kernel import (
|
|
FusedMoEModularKernel)
|
|
from vllm.model_executor.layers.fused_moe.utils import (
|
|
moe_kernel_quantize_input)
|
|
from vllm.utils import round_up
|
|
from vllm.utils.deep_gemm import per_block_cast_to_fp8
|
|
|
|
|
|
def triton_moe(
|
|
a: torch.Tensor,
|
|
w1: torch.Tensor,
|
|
w2: torch.Tensor,
|
|
topk_weight: torch.Tensor,
|
|
topk_ids: torch.Tensor,
|
|
w1_scale: Optional[torch.Tensor] = None,
|
|
w2_scale: Optional[torch.Tensor] = None,
|
|
a1_scale: Optional[torch.Tensor] = None,
|
|
a2_scale: Optional[torch.Tensor] = None,
|
|
quant_dtype: Optional[torch.dtype] = None,
|
|
per_act_token_quant=False,
|
|
block_shape: Optional[list[int]] = None,
|
|
) -> torch.Tensor:
|
|
return fused_experts(a,
|
|
w1,
|
|
w2,
|
|
topk_weight,
|
|
topk_ids,
|
|
w1_scale=w1_scale,
|
|
w2_scale=w2_scale,
|
|
a1_scale=a1_scale,
|
|
a2_scale=a2_scale,
|
|
per_channel_quant=per_act_token_quant,
|
|
use_fp8_w8a8=quant_dtype == torch.float8_e4m3fn,
|
|
block_shape=block_shape)
|
|
|
|
|
|
def batched_moe(
|
|
a: torch.Tensor,
|
|
w1: torch.Tensor,
|
|
w2: torch.Tensor,
|
|
topk_weight: torch.Tensor,
|
|
topk_ids: torch.Tensor,
|
|
w1_scale: Optional[torch.Tensor] = None,
|
|
w2_scale: Optional[torch.Tensor] = None,
|
|
a1_scale: Optional[torch.Tensor] = None,
|
|
a2_scale: Optional[torch.Tensor] = None,
|
|
quant_dtype: Optional[torch.dtype] = None,
|
|
per_act_token_quant: bool = False,
|
|
block_shape: Optional[list[int]] = None,
|
|
) -> torch.Tensor:
|
|
max_num_tokens = round_up(a.shape[0], 64)
|
|
|
|
fused_experts = FusedMoEModularKernel(
|
|
BatchedPrepareAndFinalize(max_num_tokens,
|
|
num_dispatchers=1,
|
|
num_local_experts=w1.shape[0],
|
|
rank=0),
|
|
BatchedTritonExperts(
|
|
max_num_tokens=max_num_tokens,
|
|
num_dispatchers=1,
|
|
use_fp8_w8a8=quant_dtype == torch.float8_e4m3fn,
|
|
per_act_token_quant=per_act_token_quant,
|
|
block_shape=block_shape,
|
|
),
|
|
)
|
|
|
|
return fused_experts(a,
|
|
w1,
|
|
w2,
|
|
topk_weight,
|
|
topk_ids,
|
|
w1_scale=w1_scale,
|
|
w2_scale=w2_scale,
|
|
a1_scale=a1_scale,
|
|
a2_scale=a2_scale)
|
|
|
|
|
|
def naive_batched_moe(
|
|
a: torch.Tensor,
|
|
w1: torch.Tensor,
|
|
w2: torch.Tensor,
|
|
topk_weight: torch.Tensor,
|
|
topk_ids: torch.Tensor,
|
|
w1_scale: Optional[torch.Tensor] = None,
|
|
w2_scale: Optional[torch.Tensor] = None,
|
|
a1_scale: Optional[torch.Tensor] = None,
|
|
a2_scale: Optional[torch.Tensor] = None,
|
|
quant_dtype: Optional[torch.dtype] = None,
|
|
per_act_token_quant: bool = False,
|
|
block_shape: Optional[list[int]] = None,
|
|
) -> torch.Tensor:
|
|
max_num_tokens = round_up(a.shape[0], 64)
|
|
|
|
fused_experts = FusedMoEModularKernel(
|
|
BatchedPrepareAndFinalize(max_num_tokens,
|
|
num_dispatchers=1,
|
|
num_local_experts=w1.shape[0],
|
|
rank=0),
|
|
NaiveBatchedExperts(
|
|
max_num_tokens=max_num_tokens,
|
|
num_dispatchers=1,
|
|
use_fp8_w8a8=quant_dtype == torch.float8_e4m3fn,
|
|
per_act_token_quant=per_act_token_quant,
|
|
block_shape=block_shape,
|
|
),
|
|
)
|
|
|
|
return fused_experts(a,
|
|
w1,
|
|
w2,
|
|
topk_weight,
|
|
topk_ids,
|
|
w1_scale=w1_scale,
|
|
w2_scale=w2_scale,
|
|
a1_scale=a1_scale,
|
|
a2_scale=a2_scale)
|
|
|
|
|
|
def chunk_scales(scales: Optional[torch.Tensor], start: int,
|
|
end: int) -> Optional[torch.Tensor]:
|
|
if scales is not None:
|
|
if scales.numel() == 1:
|
|
return scales
|
|
else:
|
|
return scales[start:end]
|
|
return None
|
|
|
|
|
|
def make_quantized_test_activations(
|
|
E: int,
|
|
m: int,
|
|
k: int,
|
|
in_dtype: torch.dtype,
|
|
quant_dtype: Optional[torch.dtype] = None,
|
|
block_shape: Optional[list[int]] = None,
|
|
per_act_token_quant: bool = False,
|
|
) -> tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
|
a = torch.randn((E, m, k), device="cuda", dtype=in_dtype) / 10
|
|
a_q = a
|
|
a_scale = None
|
|
|
|
if quant_dtype is not None:
|
|
assert (quant_dtype == torch.float8_e4m3fn
|
|
or quant_dtype == torch.int8), "only fp8/int8 supported"
|
|
a_q = torch.zeros_like(a, dtype=quant_dtype)
|
|
a_scale_l = [None] * E
|
|
for e in range(E):
|
|
a_q[e], a_scale_l[e] = moe_kernel_quantize_input(
|
|
a[e], None, quant_dtype, per_act_token_quant, block_shape)
|
|
a_scale = torch.stack(a_scale_l)
|
|
|
|
if not per_act_token_quant and block_shape is None:
|
|
a_scale = a_scale.view(E, 1, 1)
|
|
|
|
return a, a_q, a_scale
|
|
|
|
|
|
def moe_quantize_weights(
|
|
w: torch.Tensor,
|
|
w_s: Optional[torch.Tensor],
|
|
quant_dtype: Union[torch.dtype, str, None],
|
|
per_token_quant: bool,
|
|
block_shape: Optional[list[int]],
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]:
|
|
assert (quant_dtype == torch.float8_e4m3fn or quant_dtype == torch.int8
|
|
or quant_dtype == "nvfp4"), "only fp8/int8/nvfp4 supported"
|
|
|
|
w_gs = None
|
|
|
|
if block_shape is not None:
|
|
assert not per_token_quant
|
|
if quant_dtype == torch.int8:
|
|
w, w_s = per_block_cast_to_int8(w, block_shape)
|
|
elif quant_dtype == torch.float8_e4m3fn:
|
|
w, w_s = per_block_cast_to_fp8(w, block_shape)
|
|
elif quant_dtype == "nvfp4":
|
|
raise RuntimeError("blocked quantization not supported for nvfp4")
|
|
else:
|
|
raise RuntimeError(f"Unsupported quant type {quant_dtype}")
|
|
else:
|
|
if quant_dtype == torch.int8:
|
|
w, w_s = ops.scaled_int8_quant(
|
|
w, w_s, use_per_token_if_dynamic=per_token_quant)
|
|
elif quant_dtype == torch.float8_e4m3fn:
|
|
w, w_s = ops.scaled_fp8_quant(
|
|
w, w_s, use_per_token_if_dynamic=per_token_quant)
|
|
elif quant_dtype == "nvfp4":
|
|
assert not per_token_quant
|
|
w_amax = torch.abs(w).max().to(torch.float32)
|
|
w_gs = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / w_amax
|
|
w, w_s = ops.scaled_fp4_quant(w, w_gs)
|
|
else:
|
|
raise RuntimeError(f"Unsupported quant type {quant_dtype}")
|
|
|
|
return w, w_s, w_gs
|
|
|
|
|
|
def make_test_weight(
|
|
e: int,
|
|
rows: int,
|
|
cols: int,
|
|
in_dtype: torch.dtype = torch.bfloat16,
|
|
quant_dtype: Union[torch.dtype, str, None] = None,
|
|
block_shape: Optional[list[int]] = None,
|
|
per_act_token_quant: bool = False,
|
|
) -> tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor],
|
|
Optional[torch.Tensor]]:
|
|
w_16 = torch.randn((e, rows, cols), device="cuda", dtype=in_dtype) / 15
|
|
w_gs = None
|
|
|
|
if quant_dtype is not None:
|
|
w_l = [None] * e
|
|
w_s_l = [None] * e
|
|
w_gs_l = [None] * e
|
|
for idx in range(e):
|
|
w_l[idx], w_s_l[idx], w_gs_l[idx] = moe_quantize_weights(
|
|
w_16[idx], None, quant_dtype, per_act_token_quant, block_shape)
|
|
|
|
w = torch.stack(w_l)
|
|
w_s = torch.stack(w_s_l)
|
|
if e > 0 and w_gs_l[0] is not None:
|
|
w_gs = torch.stack(w_gs_l)
|
|
if w_s.ndim == 2:
|
|
assert w_s.shape[-1] == 1
|
|
w_s = w_s.view(-1, 1, 1)
|
|
|
|
if block_shape is not None:
|
|
block_n, block_k = block_shape
|
|
n_tiles = (rows + block_n - 1) // block_n
|
|
k_tiles = (cols + block_k - 1) // block_k
|
|
assert w_s.shape == (e, n_tiles, k_tiles)
|
|
else:
|
|
w = w_16
|
|
w_s = None
|
|
w_gs = None
|
|
|
|
return w_16, w, w_s, w_gs
|
|
|
|
|
|
def make_test_weights(
|
|
e: int,
|
|
n: int,
|
|
k: int,
|
|
in_dtype: torch.dtype = torch.bfloat16,
|
|
quant_dtype: Union[torch.dtype, str, None] = None,
|
|
block_shape: Optional[list[int]] = None,
|
|
per_act_token_quant: bool = False,
|
|
) -> tuple[tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor],
|
|
Optional[torch.Tensor]],
|
|
tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor],
|
|
Optional[torch.Tensor]]]:
|
|
return (
|
|
make_test_weight(e, 2 * n, k, in_dtype, quant_dtype, block_shape,
|
|
per_act_token_quant),
|
|
make_test_weight(e, k, n, in_dtype, quant_dtype, block_shape,
|
|
per_act_token_quant),
|
|
)
|
|
|
|
|
|
def per_token_cast_to_fp8(
|
|
x: torch.Tensor,
|
|
block_size: int = 128) -> tuple[torch.Tensor, torch.Tensor]:
|
|
assert x.dim() == 2
|
|
m, n = x.shape
|
|
pad_size = (block_size - (n % block_size)) % block_size
|
|
x = torch.nn.functional.pad(x,
|
|
(0, pad_size), value=0) if pad_size > 0 else x
|
|
x_view = x.view(m, -1, block_size)
|
|
x_amax = x_view.abs().float().amax(dim=2).view(m, -1).clamp(1e-4)
|
|
fp8_data = (x_view * (448.0 / x_amax.unsqueeze(2))).to(torch.float8_e4m3fn)
|
|
return fp8_data.view(m, n + pad_size)[:, :n], (x_amax / 448.0).view(m, -1)
|