mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-06 22:16:31 +08:00
640 lines
22 KiB
Python
640 lines
22 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Copyright 2025 The vLLM team.
|
|
# Copyright 2025 NVIDIA CORPORATION and the HuggingFace Inc. team. All rights
|
|
# reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from collections.abc import Iterable, Mapping, Sequence
|
|
from typing import Annotated, Any, Literal, TypeAlias
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import BatchFeature, PretrainedConfig
|
|
from transformers.models.audioflamingo3 import (
|
|
AudioFlamingo3Config,
|
|
AudioFlamingo3Processor,
|
|
)
|
|
from transformers.models.qwen2_audio import Qwen2AudioEncoder
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.config.multimodal import BaseDummyOptions
|
|
from vllm.model_executor.layers.activation import get_act_fn
|
|
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import (
|
|
MultiModalDataDict,
|
|
MultiModalFieldConfig,
|
|
MultiModalKwargsItems,
|
|
)
|
|
from vllm.multimodal.parse import (
|
|
DictEmbeddingItems,
|
|
ModalityData,
|
|
ModalityDataItems,
|
|
MultiModalDataItems,
|
|
MultiModalDataParser,
|
|
)
|
|
from vllm.multimodal.processing import (
|
|
BaseMultiModalProcessor,
|
|
BaseProcessingInfo,
|
|
PromptReplacement,
|
|
PromptUpdate,
|
|
PromptUpdateDetails,
|
|
)
|
|
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
|
|
|
from .interfaces import (
|
|
MultiModalEmbeddings,
|
|
SupportsLoRA,
|
|
SupportsMultiModal,
|
|
SupportsPP,
|
|
)
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
init_vllm_registered_model,
|
|
maybe_prefix,
|
|
)
|
|
|
|
MAX_AUDIO_LEN = 10 * 60
|
|
|
|
|
|
# === Audio Inputs === #
|
|
class AudioFlamingo3FeatureInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- num_chunks: Number of audio chunks (flattened)
|
|
- nmb: Number of mel bins
|
|
- num_audios: Number of original audio files
|
|
"""
|
|
|
|
type: Literal["audio_features"]
|
|
input_features: Annotated[
|
|
torch.Tensor | list[torch.Tensor],
|
|
TensorShape("num_chunks", "nmb", 3000),
|
|
]
|
|
|
|
feature_attention_mask: Annotated[
|
|
torch.Tensor,
|
|
TensorShape("num_chunks", 3000),
|
|
]
|
|
|
|
chunk_counts: Annotated[
|
|
torch.Tensor,
|
|
TensorShape("num_audios"),
|
|
]
|
|
|
|
|
|
class AudioFlamingo3EmbeddingInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- bn: Batch size
|
|
- naf: Number of audio features
|
|
- hs: Hidden size (must match the hidden size of language model
|
|
backbone)
|
|
"""
|
|
|
|
type: Literal["audio_embeds"] = "audio_embeds"
|
|
|
|
audio_embeds: Annotated[
|
|
list[torch.Tensor],
|
|
TensorShape("bn", "naf", "hs", dynamic_dims={"naf"}),
|
|
]
|
|
|
|
|
|
AudioFlamingo3Inputs: TypeAlias = (
|
|
AudioFlamingo3FeatureInputs | AudioFlamingo3EmbeddingInputs
|
|
)
|
|
|
|
|
|
class AudioFlamingo3Encoder(Qwen2AudioEncoder):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
):
|
|
super().__init__(config)
|
|
self.avg_pooler = nn.AvgPool1d(kernel_size=2, stride=2)
|
|
# self.layer_norm is already initialized in super().__init__
|
|
|
|
def forward(
|
|
self,
|
|
input_features: torch.Tensor | list[torch.Tensor],
|
|
attention_mask: torch.Tensor = None,
|
|
):
|
|
# input_features: (batch, num_mel_bins, seq_len)
|
|
if isinstance(input_features, list):
|
|
input_features = torch.stack(input_features)
|
|
|
|
hidden_states = nn.functional.gelu(self.conv1(input_features))
|
|
hidden_states = nn.functional.gelu(self.conv2(hidden_states))
|
|
hidden_states = hidden_states.transpose(-1, -2)
|
|
hidden_states = (
|
|
hidden_states + self.embed_positions.weight[: hidden_states.size(-2), :]
|
|
).to(hidden_states.dtype)
|
|
|
|
for layer in self.layers:
|
|
layer_outputs = layer(hidden_states, attention_mask)
|
|
hidden_states = layer_outputs[0]
|
|
|
|
# AvgPool (time/2) + LayerNorm
|
|
# hidden_states: (batch, seq_len, hidden_size)
|
|
hidden_states = hidden_states.permute(0, 2, 1) # (batch, hidden_size, seq_len)
|
|
hidden_states = self.avg_pooler(hidden_states)
|
|
hidden_states = hidden_states.permute(
|
|
0, 2, 1
|
|
) # (batch, seq_len/2, hidden_size)
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
def _get_feat_extract_output_lengths(self, input_lengths: torch.Tensor):
|
|
"""
|
|
Computes the output length of the convolutional layers and the output length
|
|
of the audio encoder
|
|
"""
|
|
input_lengths = (input_lengths - 1) // 2 + 1
|
|
output_lengths = (input_lengths - 2) // 2 + 1
|
|
return input_lengths, output_lengths
|
|
|
|
|
|
class AudioFlamingo3MultiModalProjector(nn.Module):
|
|
def __init__(self, config: PretrainedConfig):
|
|
super().__init__()
|
|
self.linear_1 = nn.Linear(
|
|
config.audio_config.hidden_size,
|
|
config.text_config.hidden_size,
|
|
bias=config.projector_bias,
|
|
)
|
|
self.act = get_act_fn(config.projector_hidden_act)
|
|
self.linear_2 = nn.Linear(
|
|
config.text_config.hidden_size,
|
|
config.text_config.hidden_size,
|
|
bias=config.projector_bias,
|
|
)
|
|
|
|
def forward(self, audio_features):
|
|
hidden_states = self.linear_1(audio_features)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states = self.linear_2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class AudioFlamingo3ProcessingInfo(BaseProcessingInfo):
|
|
def get_hf_config(self):
|
|
return self.ctx.get_hf_config(AudioFlamingo3Config)
|
|
|
|
def get_hf_processor(self, **kwargs: object):
|
|
return self.ctx.get_hf_processor(AudioFlamingo3Processor, **kwargs)
|
|
|
|
def get_feature_extractor(self, **kwargs: object):
|
|
hf_processor = self.get_hf_processor(**kwargs)
|
|
feature_extractor = hf_processor.feature_extractor
|
|
return feature_extractor
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
|
|
return {"audio": None}
|
|
|
|
|
|
class AudioFlamingo3DummyInputsBuilder(
|
|
BaseDummyInputsBuilder[AudioFlamingo3ProcessingInfo]
|
|
):
|
|
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
num_audios = mm_counts.get("audio", 0)
|
|
hf_processor = self.info.get_hf_processor()
|
|
audio_token = hf_processor.audio_token
|
|
return audio_token * num_audios
|
|
|
|
def get_dummy_mm_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
mm_options: Mapping[str, BaseDummyOptions] | None = None,
|
|
) -> MultiModalDataDict:
|
|
feature_extractor = self.info.get_feature_extractor()
|
|
sampling_rate = feature_extractor.sampling_rate
|
|
audio_len = MAX_AUDIO_LEN * sampling_rate
|
|
num_audios = mm_counts.get("audio", 0)
|
|
audio_overrides = mm_options.get("audio") if mm_options else None
|
|
|
|
return {
|
|
"audio": self._get_dummy_audios(
|
|
length=audio_len,
|
|
num_audios=num_audios,
|
|
overrides=audio_overrides,
|
|
)
|
|
}
|
|
|
|
|
|
def _audioflamingo3_field_config(hf_inputs: Mapping[str, torch.Tensor]):
|
|
chunk_counts = hf_inputs.get("chunk_counts")
|
|
if chunk_counts is not None:
|
|
return dict(
|
|
audio_embeds=MultiModalFieldConfig.batched("audio"),
|
|
input_features=MultiModalFieldConfig.flat_from_sizes(
|
|
"audio", chunk_counts, dim=0
|
|
),
|
|
feature_attention_mask=MultiModalFieldConfig.flat_from_sizes(
|
|
"audio", chunk_counts, dim=0
|
|
),
|
|
chunk_counts=MultiModalFieldConfig.batched("audio"),
|
|
)
|
|
return dict(
|
|
audio_embeds=MultiModalFieldConfig.batched("audio"),
|
|
input_features=MultiModalFieldConfig.batched("audio"),
|
|
feature_attention_mask=MultiModalFieldConfig.batched("audio"),
|
|
chunk_counts=MultiModalFieldConfig.batched("audio"),
|
|
)
|
|
|
|
|
|
class AudioFlamingo3MultiModalDataParser(MultiModalDataParser):
|
|
def _parse_audio_data(
|
|
self,
|
|
data: dict[str, torch.Tensor] | ModalityData[Any],
|
|
) -> ModalityDataItems[Any, Any] | None:
|
|
if isinstance(data, dict):
|
|
return DictEmbeddingItems(
|
|
data,
|
|
modality="audio",
|
|
required_fields={"audio_embeds"},
|
|
fields_factory=_audioflamingo3_field_config,
|
|
)
|
|
return super()._parse_audio_data(data)
|
|
|
|
|
|
class AudioFlamingo3MultiModalProcessor(
|
|
BaseMultiModalProcessor[AudioFlamingo3ProcessingInfo]
|
|
):
|
|
def _get_data_parser(self) -> MultiModalDataParser:
|
|
feature_extractor = self.info.get_feature_extractor()
|
|
return AudioFlamingo3MultiModalDataParser(
|
|
target_sr=feature_extractor.sampling_rate
|
|
)
|
|
|
|
def _call_hf_processor(
|
|
self,
|
|
prompt: str,
|
|
mm_data: dict[str, object],
|
|
mm_kwargs: Mapping[str, Any],
|
|
tok_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
audios = mm_data.pop("audios", [])
|
|
if audios:
|
|
mm_data["audio"] = audios
|
|
|
|
if not mm_data.get("audio", []):
|
|
prompt_ids = self.info.get_tokenizer().encode(prompt)
|
|
prompt_ids = self._apply_hf_processor_tokens_only(prompt_ids)
|
|
return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")
|
|
|
|
feature_extractor = self.info.get_feature_extractor(**mm_kwargs)
|
|
mm_kwargs = dict(
|
|
**mm_kwargs,
|
|
sampling_rate=feature_extractor.sampling_rate,
|
|
)
|
|
|
|
# Calculate chunk counts
|
|
audio_list = mm_data.get("audio")
|
|
if not isinstance(audio_list, list):
|
|
audio_list = [audio_list]
|
|
|
|
chunk_counts = []
|
|
sampling_rate = feature_extractor.sampling_rate
|
|
chunk_length = feature_extractor.chunk_length
|
|
window_size = int(sampling_rate * chunk_length)
|
|
# MAX_AUDIO_LEN is 10 * 60 in HF processor.
|
|
max_windows = int(MAX_AUDIO_LEN // chunk_length)
|
|
|
|
for audio in audio_list:
|
|
# audio is numpy array or list
|
|
n_samples = len(audio) if isinstance(audio, list) else audio.shape[0]
|
|
|
|
n_win = max(1, (n_samples + window_size - 1) // window_size)
|
|
if n_win > max_windows:
|
|
n_win = max_windows
|
|
chunk_counts.append(n_win)
|
|
|
|
outputs = super()._call_hf_processor(
|
|
prompt=prompt,
|
|
mm_data=mm_data,
|
|
mm_kwargs=mm_kwargs,
|
|
tok_kwargs=tok_kwargs,
|
|
)
|
|
|
|
if "input_features_mask" in outputs:
|
|
outputs["feature_attention_mask"] = outputs.pop("input_features_mask")
|
|
|
|
outputs["chunk_counts"] = torch.tensor(chunk_counts, dtype=torch.long)
|
|
|
|
return outputs
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
return _audioflamingo3_field_config(hf_inputs)
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
out_mm_kwargs: MultiModalKwargsItems,
|
|
) -> Sequence[PromptUpdate]:
|
|
processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
|
|
tokenizer = self.info.get_tokenizer()
|
|
vocab = tokenizer.get_vocab()
|
|
|
|
audio_token = getattr(processor, "audio_token", "<sound>")
|
|
audio_token_id = vocab.get(audio_token)
|
|
if audio_token_id is None:
|
|
# Fallback if not found, though it should be there
|
|
audio_token_id = processor.audio_token_id
|
|
|
|
out_mm_data = out_mm_kwargs.get_data()
|
|
feature_attention_mask = out_mm_data.get("feature_attention_mask")
|
|
chunk_counts = out_mm_data.get("chunk_counts")
|
|
|
|
def get_replacement_audioflamingo3(item_idx: int):
|
|
if feature_attention_mask is not None:
|
|
if chunk_counts is not None:
|
|
counts = (
|
|
chunk_counts.tolist()
|
|
if isinstance(chunk_counts, torch.Tensor)
|
|
else chunk_counts
|
|
)
|
|
start_idx = sum(counts[:item_idx])
|
|
count = counts[item_idx]
|
|
end_idx = start_idx + count
|
|
|
|
if isinstance(feature_attention_mask, list):
|
|
mask_list = feature_attention_mask[start_idx:end_idx]
|
|
if len(mask_list) > 0 and isinstance(
|
|
mask_list[0], torch.Tensor
|
|
):
|
|
mask = torch.stack(mask_list)
|
|
else:
|
|
mask = torch.tensor(mask_list)
|
|
else:
|
|
mask = feature_attention_mask[start_idx:end_idx]
|
|
else:
|
|
# feature_attention_mask is list[Tensor] or Tensor
|
|
if isinstance(feature_attention_mask, list):
|
|
mask = feature_attention_mask[item_idx]
|
|
else:
|
|
mask = feature_attention_mask[item_idx].unsqueeze(0)
|
|
|
|
# mask shape: (num_chunks, 3000)
|
|
input_lengths = mask.sum(-1)
|
|
conv_lengths = (input_lengths - 1) // 2 + 1
|
|
audio_output_lengths = (conv_lengths - 2) // 2 + 1
|
|
num_features = audio_output_lengths.sum().item()
|
|
else:
|
|
audio_embeds = out_mm_data["audio_embeds"][item_idx]
|
|
num_features = audio_embeds.shape[0]
|
|
|
|
if num_features == 0:
|
|
raise ValueError("Audio is too short")
|
|
|
|
audio_tokens = [audio_token_id] * int(num_features)
|
|
return PromptUpdateDetails.select_token_id(
|
|
audio_tokens,
|
|
embed_token_id=audio_token_id,
|
|
)
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality="audio",
|
|
target=audio_token,
|
|
replacement=get_replacement_audioflamingo3,
|
|
)
|
|
]
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
AudioFlamingo3MultiModalProcessor,
|
|
info=AudioFlamingo3ProcessingInfo,
|
|
dummy_inputs=AudioFlamingo3DummyInputsBuilder,
|
|
)
|
|
class AudioFlamingo3ForConditionalGeneration(
|
|
nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA
|
|
):
|
|
"""
|
|
AudioFlamingo3 model for conditional generation.
|
|
|
|
This model integrates a Whisper-based audio encoder with a Qwen2 language model.
|
|
It supports multi-chunk audio processing.
|
|
"""
|
|
|
|
packed_modules_mapping = {
|
|
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
|
|
"gate_up_proj": ["gate_proj", "up_proj"],
|
|
}
|
|
|
|
def get_mm_mapping(self) -> MultiModelKeys:
|
|
"""
|
|
Get the module prefix in multimodal models
|
|
"""
|
|
return MultiModelKeys.from_string_field(
|
|
language_model="language_model.",
|
|
connector="multi_modal_projector.",
|
|
tower_model="audio_tower.",
|
|
)
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
self.config = config
|
|
self.multimodal_config = multimodal_config
|
|
|
|
self.audio_tower = AudioFlamingo3Encoder(
|
|
config.audio_config,
|
|
)
|
|
self.multi_modal_projector = AudioFlamingo3MultiModalProjector(config)
|
|
|
|
self.quant_config = quant_config
|
|
|
|
self.language_model = init_vllm_registered_model(
|
|
vllm_config=vllm_config,
|
|
hf_config=config.text_config,
|
|
prefix=maybe_prefix(prefix, "language_model"),
|
|
architectures=["Qwen2ForCausalLM"],
|
|
)
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.language_model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
def _parse_and_validate_audio_input(
|
|
self, **kwargs: object
|
|
) -> AudioFlamingo3Inputs | None:
|
|
input_features = kwargs.pop("input_features", None)
|
|
audio_embeds = kwargs.pop("audio_embeds", None)
|
|
feature_attention_mask = kwargs.pop("feature_attention_mask", None)
|
|
chunk_counts = kwargs.pop("chunk_counts", None)
|
|
|
|
if input_features is None and audio_embeds is None:
|
|
return None
|
|
|
|
if audio_embeds is not None:
|
|
return AudioFlamingo3EmbeddingInputs(
|
|
type="audio_embeds", audio_embeds=audio_embeds
|
|
)
|
|
|
|
if input_features is not None:
|
|
return AudioFlamingo3FeatureInputs(
|
|
type="audio_features",
|
|
input_features=input_features,
|
|
feature_attention_mask=feature_attention_mask,
|
|
chunk_counts=chunk_counts,
|
|
)
|
|
|
|
raise AssertionError("This line should be unreachable.")
|
|
|
|
def _process_audio_input(
|
|
self, audio_input: AudioFlamingo3Inputs
|
|
) -> torch.Tensor | tuple[torch.Tensor, ...]:
|
|
if audio_input["type"] == "audio_embeds":
|
|
audio_embeds = audio_input["audio_embeds"]
|
|
return tuple(audio_embeds)
|
|
|
|
input_features = audio_input["input_features"]
|
|
feature_attention_mask = audio_input["feature_attention_mask"]
|
|
chunk_counts = audio_input.get("chunk_counts")
|
|
|
|
if isinstance(input_features, list):
|
|
input_features = torch.cat(input_features, dim=0)
|
|
feature_attention_mask = torch.cat(feature_attention_mask, dim=0)
|
|
|
|
if chunk_counts is None:
|
|
chunk_counts = [1] * input_features.shape[0]
|
|
elif isinstance(chunk_counts, torch.Tensor):
|
|
chunk_counts = chunk_counts.tolist()
|
|
elif (
|
|
isinstance(chunk_counts, list)
|
|
and chunk_counts
|
|
and isinstance(chunk_counts[0], torch.Tensor)
|
|
):
|
|
chunk_counts = [c.item() for c in chunk_counts]
|
|
|
|
# Calculate output lengths
|
|
input_lengths = feature_attention_mask.sum(-1)
|
|
# Conv downsampling
|
|
conv_lengths = (input_lengths - 1) // 2 + 1
|
|
# AvgPool downsampling
|
|
audio_output_lengths = (conv_lengths - 2) // 2 + 1
|
|
|
|
batch_size, _, max_mel_seq_len = input_features.shape
|
|
|
|
# Calculate max_seq_len after convs (before pooling) for attention mask
|
|
max_seq_len = (max_mel_seq_len - 1) // 2 + 1
|
|
|
|
# Create a sequence tensor of shape (batch_size, max_seq_len)
|
|
seq_range = (
|
|
torch.arange(
|
|
0,
|
|
max_seq_len,
|
|
dtype=conv_lengths.dtype,
|
|
device=conv_lengths.device,
|
|
)
|
|
.unsqueeze(0)
|
|
.expand(batch_size, max_seq_len)
|
|
)
|
|
lengths_expand = conv_lengths.unsqueeze(-1).expand(batch_size, max_seq_len)
|
|
# Create mask
|
|
padding_mask = seq_range >= lengths_expand
|
|
|
|
audio_attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand(
|
|
batch_size, 1, max_seq_len, max_seq_len
|
|
)
|
|
audio_attention_mask = audio_attention_mask_.to(
|
|
dtype=self.audio_tower.conv1.weight.dtype,
|
|
device=self.audio_tower.conv1.weight.device,
|
|
)
|
|
audio_attention_mask[audio_attention_mask_] = float("-inf")
|
|
|
|
# Forward pass
|
|
audio_features = self.audio_tower(
|
|
input_features, attention_mask=audio_attention_mask
|
|
)
|
|
|
|
# Project
|
|
audio_features = self.multi_modal_projector(audio_features)
|
|
|
|
# Masking after pooling
|
|
num_audios, max_audio_tokens, embed_dim = audio_features.shape
|
|
audio_output_lengths = audio_output_lengths.unsqueeze(1)
|
|
audio_features_mask = (
|
|
torch.arange(max_audio_tokens)
|
|
.expand(num_audios, max_audio_tokens)
|
|
.to(audio_output_lengths.device)
|
|
< audio_output_lengths
|
|
)
|
|
masked_audio_features = audio_features[audio_features_mask].view(-1, embed_dim)
|
|
|
|
# Split to tuple of embeddings for individual audio input.
|
|
chunk_embeddings = torch.split(
|
|
masked_audio_features, audio_output_lengths.flatten().tolist()
|
|
)
|
|
|
|
grouped_embeddings = []
|
|
current_idx = 0
|
|
for count in chunk_counts:
|
|
audio_chunks = chunk_embeddings[current_idx : current_idx + count]
|
|
grouped_embeddings.append(torch.cat(audio_chunks, dim=0))
|
|
current_idx += count
|
|
return tuple(grouped_embeddings)
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.language_model
|
|
|
|
def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings:
|
|
audio_input = self._parse_and_validate_audio_input(**kwargs)
|
|
if audio_input is None:
|
|
return []
|
|
masked_audio_features = self._process_audio_input(audio_input)
|
|
return masked_audio_features
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
**kwargs: object,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
|
|
hidden_states = self.language_model.model(
|
|
input_ids,
|
|
positions,
|
|
intermediate_tensors,
|
|
inputs_embeds=inputs_embeds,
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
return self.language_model.compute_logits(hidden_states)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self)
|
|
return loader.load_weights(weights)
|