vllm/vllm/compilation/fix_functionalization.py
Harry Mellor 8fcaaf6a16
Update Optional[x] -> x | None and Union[x, y] to x | y (#26633)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-12 09:51:31 -07:00

237 lines
9.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import operator
from collections.abc import Iterable
import torch
from torch._higher_order_ops.auto_functionalize import auto_functionalized
from vllm.logger import init_logger
from vllm.platforms import current_platform
from .fx_utils import is_func
from .vllm_inductor_pass import VllmInductorPass
logger = init_logger(__name__)
class FixFunctionalizationPass(VllmInductorPass):
"""
This pass defunctionalizes certain nodes to avoid redundant tensor copies.
After this pass, DCE (dead-code elimination) should never be run,
as de-functionalized nodes may appear as dead code.
To add new nodes to defunctionalize, add to the if-elif chain in __call__.
"""
@VllmInductorPass.time_and_log
def __call__(self, graph: torch.fx.Graph):
# XPU does not support auto-functionalization yet.
# Will enable this when switch to vllm-xpu-kernels.
if current_platform.is_xpu():
logger.debug(
"XPU platform does not support fix functionalizationpass currently."
)
return
self.nodes_to_remove: list[torch.fx.Node] = []
count = 0
for node in graph.nodes:
if not is_func(node, auto_functionalized):
continue # Avoid deep if-elif nesting
kwargs = node.kwargs
at_target = node.args[0]
if at_target == torch.ops._C.rotary_embedding.default:
query = kwargs["query"]
key = kwargs["key"]
getitem_nodes = self.getitem_users(node)
if (
is_func(query, operator.getitem)
and is_func(key, operator.getitem)
and query.args[0] == key.args[0]
and is_func(query.args[0], torch.ops.aten.split_with_sizes.default)
and all(
is_func(user, torch.ops.aten.slice_scatter.default)
for getitem_node in getitem_nodes.values()
for user in getitem_node.users
)
):
# Pattern where query and key are slices of an mm_node.
# While functionalized, results at [1] and [2] are scattered
# back into mm_node. So after de-functionalization, we can
# just use mm_node directly.
mm_node = query.args[0].args[0]
for user in getitem_nodes.values():
for user_of_getitem in user.users:
if is_func(
user_of_getitem, torch.ops.aten.slice_scatter.default
):
user_of_getitem.replace_all_uses_with(mm_node)
self._remove(user_of_getitem)
self._remove(user)
self.insert_defunctionalized(graph, node)
self._remove(node)
else:
# Directly replace the auto_functionalize(rotary_embedding)
# with the inplace rotary_embedding. In theory, we shouldn't
# do this blindly, but in practice in vLLM it's ok. The best
# solution is to use auto_functionalization_v2 and then use
# inductor's builtin defunctionalization (reinplacing) pass.
mutated_args = {1: "query", 2: "key"}
self.defunctionalize(graph, node, mutated_args)
# rms_norm replacements avoid the most copies for LLaMa.
elif at_target == torch.ops._C.fused_add_rms_norm.default:
mutated_args = {1: "input", 2: "residual"}
self.defunctionalize(graph, node, mutated_args)
elif at_target == torch.ops._C.fused_add_rms_norm_static_fp8_quant.default: # noqa: E501
mutated_args = {1: "result", 2: "residual"}
self.defunctionalize(graph, node, mutated_args)
elif at_target == torch.ops._C.rms_norm_dynamic_per_token_quant.default: # noqa: E501
mutated_args = {1: "result", 2: "scale", 3: "residual"}
self.defunctionalize(graph, node, mutated_args)
elif at_target in [
torch.ops._C.rms_norm.default,
torch.ops._C.rms_norm_static_fp8_quant.default,
]:
mutated_args = {1: "result"}
self.defunctionalize(graph, node, mutated_args)
# For some reason we need to specify the args for both
# silu_and_mul and silu_and_mul_quant. The kwargs
# pathway gets the wrong answer.
elif at_target == torch.ops._C.silu_and_mul.default:
mutated_args = {1: "result"}
self.defunctionalize(
graph, node, mutated_args, args=("result", "input")
)
elif at_target == torch.ops._C.silu_and_mul_quant.default:
mutated_args = {1: "result"}
self.defunctionalize(
graph, node, mutated_args, args=("result", "input", "scale")
)
elif (
hasattr(torch.ops._C, "silu_and_mul_nvfp4_quant")
and at_target == torch.ops._C.silu_and_mul_nvfp4_quant.default
):
mutated_args = {1: "result", 2: "result_block_scale"}
self.defunctionalize(
graph,
node,
mutated_args,
args=(
"result",
"result_block_scale",
"input",
"input_global_scale",
),
)
else:
continue # skip the count
count += 1
self.dump_graph(graph, "before_cleanup")
# Remove the nodes all at once
count_removed = len(self.nodes_to_remove)
for node in self.nodes_to_remove:
graph.erase_node(node)
logger.debug(
"De-functionalized %s nodes, removed %s nodes", count, count_removed
)
self.nodes_to_remove.clear()
def _remove(self, node_or_nodes: torch.fx.Node | Iterable[torch.fx.Node]):
"""
Stage a node (or nodes) for removal at the end of the pass.
"""
if isinstance(node_or_nodes, torch.fx.Node):
self.nodes_to_remove.append(node_or_nodes)
else:
self.nodes_to_remove.extend(node_or_nodes)
def defunctionalize(
self,
graph: torch.fx.Graph,
node: torch.fx.Node,
mutated_args: dict[int, torch.fx.Node | str],
args: tuple[torch.fx.Node | str, ...] | None = None,
):
"""
De-functionalize a node by replacing it with a call to the original.
It also replaces the getitem users with the mutated arguments.
See replace_users_with_mutated_args and insert_defunctionalized.
"""
self.replace_users_with_mutated_args(node, mutated_args)
self.insert_defunctionalized(graph, node, args=args)
self._remove(node)
def replace_users_with_mutated_args(
self, node: torch.fx.Node, mutated_args: dict[int, torch.fx.Node | str]
):
"""
Replace all getitem users of the auto-functionalized node with the
mutated arguments.
:param node: The auto-functionalized node
:param mutated_args: The mutated arguments, indexed by getitem index.
If the value of an arg is a string, `node.kwargs[arg]` is used.
"""
for idx, user in self.getitem_users(node).items():
arg = mutated_args[idx]
arg = node.kwargs[arg] if isinstance(arg, str) else arg
user.replace_all_uses_with(arg)
self._remove(user)
def getitem_users(self, node: torch.fx.Node) -> dict[int, torch.fx.Node]:
"""
Returns the operator.getitem users of the auto-functionalized node,
indexed by the index they are getting.
"""
users = {}
for user in node.users:
if is_func(user, operator.getitem):
idx = user.args[1]
users[idx] = user
return users
def insert_defunctionalized(
self,
graph: torch.fx.Graph,
node: torch.fx.Node,
args: tuple[torch.fx.Node | str, ...] | None = None,
):
"""
Insert a new defunctionalized node into the graph before node.
If one of the kwargs is 'out', provide args directly,
as node.kwargs cannot be used.
See https://github.com/pytorch/pytorch/blob/a00faf440888ffb724bad413f329a49e2b6388e7/torch/_inductor/lowering.py#L351
:param graph: Graph to insert the defunctionalized node into
:param node: The auto-functionalized node to defunctionalize
:param args: If we cannot use kwargs, specify args directly.
If an arg is a string, `node.kwargs[arg]` is used.
""" # noqa: E501
assert is_func(node, auto_functionalized), (
f"node must be auto-functionalized, is {node} instead"
)
# Create a new call to the original function
with graph.inserting_before(node):
function = node.args[0]
if args is None:
graph.call_function(function, kwargs=node.kwargs)
else:
# Args passed as strings refer to items in node.kwargs
args = tuple(
node.kwargs[arg] if isinstance(arg, str) else arg for arg in args
)
graph.call_function(function, args=args)