vllm/tests/kernels/moe/test_flashinfer.py
bnellnm 8f066146c3
[MoE][Refactor] Make select_experts a non-static method (#29067)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-11-24 13:38:04 -05:00

273 lines
8.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from dataclasses import dataclass
import pytest
import torch
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.fused_moe.config import (
FusedMoEQuantConfig,
fp8_w8a8_moe_quant_config,
)
from vllm.model_executor.layers.fused_moe.fused_moe import fused_experts
from vllm.model_executor.layers.quantization.utils.flashinfer_utils import (
apply_flashinfer_per_tensor_scale_fp8,
flashinfer_cutlass_moe_fp8,
register_moe_scaling_factors,
rotate_flashinfer_fp8_moe_weights,
swap_w13_to_w31,
)
from vllm.model_executor.layers.quantization.utils.fp8_utils import input_to_float8
from vllm.model_executor.models.llama4 import Llama4MoE
from vllm.platforms import current_platform
try:
from vllm.utils.flashinfer import has_flashinfer_cutlass_fused_moe
except ImportError:
if current_platform.is_rocm():
pytest.skip(
"flashinfer not supported for vLLM on ROCm", allow_module_level=True
)
if not has_flashinfer_cutlass_fused_moe() or not current_platform.has_device_capability(
90
):
pytest.skip(
"Supported for sm >= 90",
allow_module_level=True,
)
NUM_EXPERTS = [16]
TOP_KS = [1]
MNK_FACTORS = [
(256, 8192, 5120),
(127, 4096, 5120),
(10, 8192, 5120),
(10, 4096, 5120),
(1, 8192, 5120),
(1, 4096, 5120),
]
vllm_config = VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
def quant_fp8_per_tensor_batches(a):
num_batches = a.size(0)
a_quant = []
a_scales = []
for i in range(num_batches):
a_fp8, a_global_sf = input_to_float8(a[i])
a_global_sf = 1.0 / a_global_sf
a_quant.append(a_fp8)
a_scales.append(a_global_sf)
result_a_quant = torch.stack(a_quant)
result_a_scales = torch.stack(a_scales)
return result_a_quant, result_a_scales
@dataclass
class TestData:
hidden_states: torch.Tensor
w13_quantized: torch.Tensor
w2_quantized: torch.Tensor
a1_scale: torch.Tensor
a2_scale: torch.Tensor
w13_weight_scale: torch.Tensor
w2_weight_scale: torch.Tensor
layer: torch.nn.Module
@staticmethod
def make_moe_tensors_8bit(
m: int, k: int, n: int, e: int, reorder: bool, activation: str = "silu"
) -> "TestData":
is_gated = activation != "relu2_no_mul"
hidden_states = torch.randn((m, k), device="cuda", dtype=torch.bfloat16) / 10
w13 = torch.randn(
(e, (2 * n) if is_gated else n, k), device="cuda", dtype=torch.bfloat16
)
w2 = torch.randn((e, k, n), device="cuda", dtype=torch.bfloat16)
# Scale to fp8
_, a1_scale = input_to_float8(hidden_states)
a1_scale = 1.0 / a1_scale
a2_scale = torch.scalar_tensor(1.0).to(device="cuda").to(dtype=torch.float32)
w13_quantized, w13_weight_scale = quant_fp8_per_tensor_batches(w13)
w2_quantized, w2_weight_scale = quant_fp8_per_tensor_batches(w2)
layer = torch.nn.Module()
layer.w13_weight = w13_quantized.clone()
layer.w2_weight = w2_quantized.clone()
layer.w13_input_scale = a1_scale
layer.w2_input_scale = a2_scale
layer.w13_weight_scale = w13_weight_scale
layer.w2_weight_scale = w2_weight_scale
register_moe_scaling_factors(layer)
# flashinfer expects swapped rows for w13
layer.w13_weight.data = swap_w13_to_w31(layer.w13_weight.data)
if reorder:
rotate_flashinfer_fp8_moe_weights(layer.w13_weight, layer.w2_weight)
layer.custom_routing_function = Llama4MoE.custom_routing_function
layer.intermediate_size_per_partition = n
layer.ep_rank = 0
layer.local_num_experts = e
return TestData(
hidden_states=hidden_states,
w13_quantized=w13_quantized,
w2_quantized=w2_quantized,
a1_scale=a1_scale,
a2_scale=a2_scale,
w13_weight_scale=w13_weight_scale,
w2_weight_scale=w2_weight_scale,
layer=layer,
)
@pytest.mark.parametrize("m,n,k", MNK_FACTORS)
@pytest.mark.parametrize("e", NUM_EXPERTS)
@pytest.mark.parametrize("topk", TOP_KS)
def test_flashinfer_per_tensor_moe_fp8_no_graph(
m: int,
n: int,
k: int,
e: int,
topk: int,
monkeypatch,
):
if not current_platform.has_device_capability(100):
pytest.skip("Test is only supported for sm >= 100")
current_platform.seed_everything(7)
monkeypatch.setenv("VLLM_FUSED_MOE_CHUNK_SIZE", "8192")
with set_current_vllm_config(vllm_config):
td = TestData.make_moe_tensors_8bit(m, k, n, e, reorder=True)
score = torch.randn((m, e), device="cuda", dtype=torch.bfloat16)
topk_weights, topk_ids = Llama4MoE.custom_routing_function(
hidden_states=td.hidden_states,
gating_output=score,
topk=topk,
renormalize=False,
)
quant_config = fp8_w8a8_moe_quant_config(
w1_scale=td.w13_weight_scale,
w2_scale=td.w2_weight_scale,
a1_scale=td.a1_scale,
a2_scale=td.a2_scale,
per_act_token_quant=False,
)
output = fused_experts(
td.hidden_states,
td.w13_quantized,
td.w2_quantized,
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=False,
activation="silu",
global_num_experts=e,
expert_map=None,
apply_router_weight_on_input=True,
quant_config=quant_config,
)
flashinfer_output = apply_flashinfer_per_tensor_scale_fp8(
layer=td.layer,
hidden_states=td.hidden_states,
router_logits=score,
routing_bias=None,
global_num_experts=e,
top_k=topk,
num_expert_group=None,
topk_group=None,
apply_router_weight_on_input=True,
)
torch.testing.assert_close(output, flashinfer_output, atol=5.5e-2, rtol=1e-2)
@pytest.mark.parametrize("m,n,k", MNK_FACTORS)
@pytest.mark.parametrize("e", NUM_EXPERTS)
@pytest.mark.parametrize("topk", TOP_KS)
@pytest.mark.parametrize("activation", ["silu", "relu2_no_mul"])
def test_flashinfer_cutlass_moe_fp8_no_graph(
m: int,
n: int,
k: int,
e: int,
topk: int,
activation: str,
monkeypatch,
):
current_platform.seed_everything(7)
monkeypatch.setenv("VLLM_FUSED_MOE_CHUNK_SIZE", "8192")
with set_current_vllm_config(vllm_config):
td = TestData.make_moe_tensors_8bit(
m, k, n, e, reorder=False, activation=activation
)
score = torch.randn((m, e), device="cuda", dtype=torch.bfloat16)
topk_weights, topk_ids = Llama4MoE.custom_routing_function(
hidden_states=td.hidden_states,
gating_output=score,
topk=topk,
renormalize=False,
)
quant_config = fp8_w8a8_moe_quant_config(
w1_scale=td.w13_weight_scale,
g1_alphas=(td.w13_weight_scale * td.a1_scale).squeeze(),
w2_scale=td.w2_weight_scale,
g2_alphas=(td.w2_weight_scale * td.a2_scale).squeeze(),
a1_scale=td.a1_scale,
a1_gscale=td.a1_scale,
a2_scale=td.a2_scale,
a2_gscale=1.0 / td.a2_scale,
per_act_token_quant=False,
)
output = fused_experts(
td.hidden_states,
td.w13_quantized,
td.w2_quantized,
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=False,
activation=activation,
global_num_experts=e,
expert_map=None,
apply_router_weight_on_input=True,
quant_config=quant_config,
)
td.layer.dp_size = 1
def get_fused_moe_quant_config(n: torch.nn.Module) -> FusedMoEQuantConfig:
return quant_config
td.layer.get_fused_moe_quant_config = get_fused_moe_quant_config
td.layer.quant_method = td.layer
flashinfer_cutlass_output = flashinfer_cutlass_moe_fp8(
td.hidden_states,
td.layer,
topk_weights,
topk_ids,
activation=activation,
global_num_experts=e,
expert_map=None,
apply_router_weight_on_input=True,
)
torch.testing.assert_close(
output, flashinfer_cutlass_output, atol=5.5e-2, rtol=1e-2
)