vllm/tests/v1/entrypoints/openai/test_completion_with_image_embeds.py
Michael Goin 93d0652433
[CI] Increase timeout for test_completion_with_image_embeds (#22670)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-11 20:31:36 -07:00

105 lines
3.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import base64
import io
import json
import openai # use the official client for correctness check
import pytest
import pytest_asyncio
import torch
from transformers import AutoConfig
from tests.conftest import ImageTestAssets
from tests.utils import RemoteOpenAIServer
# any model with a chat template should work here
MODEL_NAME = "llava-hf/llava-1.5-7b-hf"
CONFIG = AutoConfig.from_pretrained(MODEL_NAME)
MAXIMUM_IMAGES = 2
@pytest.fixture(scope="module")
def default_image_embeds_server_args() -> list[str]:
return [
"--dtype",
"bfloat16",
"--max-model-len",
"2048",
"--max-num-seqs",
"4",
"--enforce-eager",
"--limit-mm-per-prompt",
json.dumps({"image": MAXIMUM_IMAGES}),
]
@pytest.fixture(scope="module")
def server_with_image_embeds(default_image_embeds_server_args):
with RemoteOpenAIServer(MODEL_NAME,
default_image_embeds_server_args,
max_wait_seconds=600) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client_with_image_embeds(server_with_image_embeds):
async with server_with_image_embeds.get_async_client() as async_client:
yield async_client
def encode_image_embedding_to_base64(image_embedding) -> str:
"""
Encode image embedding to base64 string
"""
buffer = io.BytesIO()
torch.save(image_embedding, buffer)
buffer.seek(0)
binary_data = buffer.read()
base64_image_embedding = base64.b64encode(binary_data).decode('utf-8')
return base64_image_embedding
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("dtype", [torch.half, torch.float16, torch.float32])
async def test_completions_with_image_embeds(
client_with_image_embeds: openai.AsyncOpenAI,
model_name: str,
image_assets: ImageTestAssets,
dtype: torch.dtype,
):
# Test case: Single image embeds input
image_embeds = image_assets[0].image_embeds.to(dtype=dtype)
base64_image_embedding = encode_image_embedding_to_base64(image_embeds)
chat_completion = await client_with_image_embeds.chat.completions.create(
messages=[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role":
"user",
"content": [
{
"type":
"text",
"text":
"Describe these images separately. For each image,"
"reply with a short sentence (no more than 10 words).",
},
{
"type": "image_embeds",
"image_embeds": base64_image_embedding,
},
],
},
],
model=model_name,
)
assert chat_completion.choices[0].message.content is not None
assert isinstance(chat_completion.choices[0].message.content, str)
assert len(chat_completion.choices[0].message.content) > 0