mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 06:05:01 +08:00
Signed-off-by: Xin Yang <xyangx@amazon.com> Co-authored-by: Michael Goin <mgoin64@gmail.com> Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
698 lines
27 KiB
Python
698 lines
27 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from copy import deepcopy
|
|
from typing import Any, Callable, Optional, Union
|
|
|
|
import torch
|
|
|
|
import vllm.model_executor.layers.fused_moe # noqa
|
|
from vllm import _custom_ops as ops
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.fused_moe.layer import (
|
|
FusedMoE, FusedMoEConfig, FusedMoEMethodBase, FusedMoeWeightScaleSupported,
|
|
UnquantizedFusedMoEMethod)
|
|
from vllm.model_executor.layers.linear import (LinearMethodBase,
|
|
set_weight_attrs)
|
|
from vllm.model_executor.layers.quantization import QuantizationMethods
|
|
from vllm.model_executor.layers.quantization.base_config import (
|
|
QuantizationConfig, QuantizeMethodBase)
|
|
from vllm.model_executor.layers.quantization.kernels.mixed_precision import (
|
|
MPLinearLayerConfig, choose_mp_linear_kernel)
|
|
from vllm.model_executor.layers.quantization.utils import replace_parameter
|
|
from vllm.model_executor.layers.quantization.utils.gptq_utils import (
|
|
get_dynamic_override, get_linear_quant_method, override_config)
|
|
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
|
|
check_marlin_supported, check_moe_marlin_supports_layer,
|
|
marlin_make_workspace_new, marlin_moe_permute_scales, marlin_permute_bias,
|
|
marlin_repeat_scales_on_all_ranks, verify_marlin_supported)
|
|
from vllm.model_executor.parameter import (ChannelQuantScaleParameter,
|
|
GroupQuantScaleParameter,
|
|
PackedColumnParameter,
|
|
PackedvLLMParameter,
|
|
RowvLLMParameter)
|
|
from vllm.platforms import current_platform
|
|
from vllm.scalar_type import scalar_types
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
def get_moe_quant_method(
|
|
config: QuantizationConfig,
|
|
layer: torch.nn.Module,
|
|
prefix: str,
|
|
moe_method_cls: type,
|
|
):
|
|
cloned_config = deepcopy(config)
|
|
|
|
if isinstance(layer, FusedMoE):
|
|
# False = skip module, None = no override, else = Positive match
|
|
if get_dynamic_override( # noqa: E712
|
|
cloned_config, # noqa: E712
|
|
layer_name=prefix) == False: # noqa: E712
|
|
return UnquantizedFusedMoEMethod(layer.moe_config)
|
|
|
|
if prefix:
|
|
# Dynamic per module/layer rules may override base config
|
|
override_config(cloned_config, prefix=prefix)
|
|
|
|
return moe_method_cls(cloned_config, layer.moe_config)
|
|
return None
|
|
|
|
|
|
class GPTQMarlinConfig(QuantizationConfig):
|
|
"""Config class for GPTQ Marlin"""
|
|
|
|
# (num_bits, is_sym) -> quant_type
|
|
TYPE_MAP = {
|
|
(4, True): scalar_types.uint4b8,
|
|
(8, True): scalar_types.uint8b128,
|
|
}
|
|
|
|
def __init__(self, weight_bits: int, group_size: int, desc_act: bool,
|
|
is_sym: bool, lm_head_quantized: bool,
|
|
dynamic: dict[str, dict[str, Union[int, bool]]],
|
|
full_config: dict[str, Any]) -> None:
|
|
super().__init__()
|
|
if desc_act and group_size == -1:
|
|
# In this case, act_order == True is the same as act_order == False
|
|
# (since we have only one group per output channel)
|
|
desc_act = False
|
|
|
|
# GPTQModel use `dynamic` config property to allow per module
|
|
# quantization config so each module can be individually optimized.
|
|
# Format is dict[str, dict] where key is a regex string that can
|
|
# perform both positive ("+:" prefixed) or negative ("-:" prefixed)
|
|
# matching of a module.
|
|
# Default to positive match, override base quant config mode, if no
|
|
# prefix is used. Value is in dict format of field key and override
|
|
# value.
|
|
# Negative matching will skip quantization init for this module
|
|
# entirely:
|
|
# non-quantized inference. More details and quantization examples can be
|
|
# found at: https://github.com/ModelCloud/GPTQModel
|
|
# Example:
|
|
# # last 1/2 of the layers 10-21 has 8bit vs 4bit for 0-9
|
|
# # last 1/4 of the layers 16-21 has 8bit and group_size 64
|
|
# dynamic = {
|
|
# #`.*\.` matches the layers_node prefix
|
|
# # positive match layer 10-15
|
|
# r"+:.*\.(?:1[0-5])\..*": {"bits": 8,},
|
|
# # positive match layer 16-21
|
|
# r"+:.*\.(?:1[6-9]|20|21)\..*": {"bits": 8, "group_size": 64,},
|
|
# r"-:.*\.moe\..*": {}, # negative match (skip) all `moe` layers
|
|
# }
|
|
self.dynamic = dynamic
|
|
|
|
self.weight_bits = weight_bits
|
|
self.is_sym = is_sym
|
|
|
|
self.pack_factor = 32 // weight_bits # packed into int32
|
|
self.group_size = group_size
|
|
self.desc_act = desc_act
|
|
self.lm_head_quantized = lm_head_quantized
|
|
self.full_config = full_config
|
|
|
|
if (weight_bits, is_sym) not in self.TYPE_MAP:
|
|
raise ValueError("Unsupported quantization config: "
|
|
f"bits={weight_bits}, sym={is_sym}")
|
|
|
|
self.quant_type = self.TYPE_MAP[(weight_bits, is_sym)]
|
|
|
|
def __repr__(self) -> str:
|
|
return (f"GPTQMarlinConfig(quant_type={self.quant_type}, "
|
|
f"group_size={self.group_size}, "
|
|
f"desc_act={self.desc_act}, "
|
|
f"lm_head_quantized={self.lm_head_quantized}), "
|
|
f"dynamic={self.dynamic}")
|
|
|
|
@classmethod
|
|
def get_name(cls) -> QuantizationMethods:
|
|
return "gptq_marlin"
|
|
|
|
@classmethod
|
|
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
|
|
return [torch.half, torch.bfloat16]
|
|
|
|
@classmethod
|
|
def get_min_capability(cls) -> int:
|
|
return 80
|
|
|
|
@classmethod
|
|
def get_config_filenames(cls) -> list[str]:
|
|
return ["quantize_config.json"]
|
|
|
|
@classmethod
|
|
def from_config(cls, config: dict[str, Any]) -> "GPTQMarlinConfig":
|
|
dynamic = cls.get_from_keys_or(config, ["dynamic"], default={})
|
|
dynamic = {} if dynamic is None else dynamic
|
|
|
|
weight_bits = cls.get_from_keys(config, ["bits"])
|
|
group_size = cls.get_from_keys(config, ["group_size"])
|
|
desc_act = cls.get_from_keys(config, ["desc_act"])
|
|
is_sym = cls.get_from_keys(config, ["sym"])
|
|
lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"],
|
|
default=False)
|
|
return cls(weight_bits, group_size, desc_act, is_sym,
|
|
lm_head_quantized, dynamic, config)
|
|
|
|
@classmethod
|
|
def override_quantization_method(
|
|
cls, hf_quant_cfg, user_quant) -> Optional[QuantizationMethods]:
|
|
can_convert = cls.is_gptq_marlin_compatible(hf_quant_cfg)
|
|
|
|
is_valid_user_quant = (user_quant is None or user_quant == "marlin"
|
|
or user_quant == "gptq_marlin")
|
|
|
|
if can_convert and is_valid_user_quant:
|
|
msg = ("The model is convertible to {} during runtime."
|
|
" Using {} kernel.".format(cls.get_name(), cls.get_name()))
|
|
logger.info(msg)
|
|
return cls.get_name()
|
|
|
|
if can_convert and user_quant == "gptq":
|
|
logger.info("Detected that the model can run with gptq_marlin"
|
|
", however you specified quantization=gptq explicitly,"
|
|
" so forcing gptq. Use quantization=gptq_marlin for"
|
|
" faster inference")
|
|
return None
|
|
|
|
def get_quant_method(self, layer: torch.nn.Module,
|
|
prefix: str) -> Optional["QuantizeMethodBase"]:
|
|
if isinstance(layer, FusedMoE):
|
|
from vllm.model_executor.layers.quantization.moe_wna16 import (
|
|
MoeWNA16Config)
|
|
if not check_moe_marlin_supports_layer(layer, self.group_size):
|
|
logger.warning_once(
|
|
f"Layer '{prefix}' is not supported by GPTQMoeMarlin. "
|
|
"Falling back to Moe WNA16 kernels.")
|
|
return MoeWNA16Config.from_config(
|
|
self.full_config).get_quant_method(layer, prefix)
|
|
return get_moe_quant_method(self, layer, prefix,
|
|
GPTQMarlinMoEMethod)
|
|
return get_linear_quant_method(self, layer, prefix,
|
|
GPTQMarlinLinearMethod)
|
|
|
|
@classmethod
|
|
def is_gptq_marlin_compatible(cls, quant_config: dict[str, Any]):
|
|
quant_method = quant_config.get("quant_method", "").lower()
|
|
num_bits = quant_config.get("bits")
|
|
group_size = quant_config.get("group_size")
|
|
sym = quant_config.get("sym")
|
|
desc_act = quant_config.get("desc_act")
|
|
|
|
if not current_platform.is_cuda():
|
|
return False
|
|
|
|
if quant_method != "gptq":
|
|
return False
|
|
|
|
# Marlin conversion is only valid if required properties are found
|
|
if (num_bits is None or group_size is None or sym is None
|
|
or desc_act is None):
|
|
return False
|
|
|
|
if (num_bits, sym) not in cls.TYPE_MAP:
|
|
return False
|
|
|
|
return check_marlin_supported(quant_type=cls.TYPE_MAP[(num_bits, sym)],
|
|
group_size=group_size)
|
|
|
|
|
|
class GPTQMarlinLinearMethod(LinearMethodBase):
|
|
"""Linear method for GPTQ Marlin.
|
|
|
|
Args:
|
|
quant_config: The GPTQ Marlin quantization config.
|
|
"""
|
|
|
|
_kernel_backends_being_used: set[str] = set()
|
|
|
|
def __init__(self, quant_config: GPTQMarlinConfig) -> None:
|
|
self.quant_config = quant_config
|
|
|
|
# Verify supported on platform.
|
|
verify_marlin_supported(quant_type=self.quant_config.quant_type,
|
|
group_size=self.quant_config.group_size)
|
|
|
|
def create_weights(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
input_size_per_partition: int,
|
|
output_partition_sizes: list[int],
|
|
input_size: int,
|
|
output_size: int,
|
|
params_dtype: torch.dtype,
|
|
**extra_weight_attrs,
|
|
) -> None:
|
|
output_size_per_partition = sum(output_partition_sizes)
|
|
is_row_parallel = input_size != input_size_per_partition
|
|
weight_loader = extra_weight_attrs.get("weight_loader")
|
|
|
|
mp_linear_kernel_config = MPLinearLayerConfig(
|
|
full_weight_shape=(input_size, output_size),
|
|
partition_weight_shape=\
|
|
(input_size_per_partition, output_size_per_partition),
|
|
weight_type=self.quant_config.quant_type,
|
|
act_type=params_dtype,
|
|
group_size=self.quant_config.group_size,
|
|
zero_points=False,
|
|
has_g_idx=self.quant_config.desc_act
|
|
)
|
|
|
|
kernel_type = choose_mp_linear_kernel(mp_linear_kernel_config)
|
|
|
|
if kernel_type.__name__ not in self._kernel_backends_being_used:
|
|
logger.info("Using %s for GPTQMarlinLinearMethod",
|
|
kernel_type.__name__)
|
|
self._kernel_backends_being_used.add(kernel_type.__name__)
|
|
|
|
# Normalize group_size
|
|
if self.quant_config.group_size != -1:
|
|
group_size = self.quant_config.group_size
|
|
else:
|
|
group_size = input_size
|
|
|
|
# Determine sharding
|
|
if marlin_repeat_scales_on_all_ranks(self.quant_config.desc_act,
|
|
self.quant_config.group_size,
|
|
is_row_parallel):
|
|
# By setting scale_dim == None, weight_loader will
|
|
# repeat the scales on each GPU in TP>1 case.
|
|
scales_and_zp_input_dim = None
|
|
scales_and_zp_size = input_size // group_size
|
|
else:
|
|
# By setting scale_dim == 0, weight_loader will
|
|
# shard the scales in TP>1 case.
|
|
scales_and_zp_input_dim = 0
|
|
scales_and_zp_size = input_size_per_partition // group_size
|
|
|
|
# Quantized weights
|
|
qweight = PackedvLLMParameter(
|
|
data=torch.empty(
|
|
input_size_per_partition // self.quant_config.pack_factor,
|
|
output_size_per_partition,
|
|
dtype=torch.int32,
|
|
),
|
|
input_dim=0,
|
|
output_dim=1,
|
|
packed_dim=0,
|
|
packed_factor=self.quant_config.pack_factor,
|
|
weight_loader=weight_loader)
|
|
|
|
# Activation order
|
|
g_idx = RowvLLMParameter(data=torch.empty(
|
|
input_size_per_partition,
|
|
dtype=torch.int32,
|
|
),
|
|
input_dim=0,
|
|
weight_loader=weight_loader)
|
|
|
|
qzeros_args = {
|
|
"data":
|
|
torch.empty(
|
|
scales_and_zp_size,
|
|
output_size_per_partition // self.quant_config.pack_factor,
|
|
dtype=torch.int32,
|
|
),
|
|
"weight_loader":
|
|
weight_loader
|
|
}
|
|
weight_scale_args = {
|
|
"data":
|
|
torch.empty(
|
|
scales_and_zp_size,
|
|
output_size_per_partition,
|
|
dtype=params_dtype,
|
|
),
|
|
"weight_loader":
|
|
weight_loader
|
|
}
|
|
|
|
if scales_and_zp_input_dim is None:
|
|
scales = ChannelQuantScaleParameter(output_dim=1,
|
|
**weight_scale_args)
|
|
qzeros = PackedColumnParameter(
|
|
output_dim=1,
|
|
packed_dim=1,
|
|
packed_factor=self.quant_config.pack_factor,
|
|
**qzeros_args)
|
|
|
|
else:
|
|
scales = GroupQuantScaleParameter(output_dim=1,
|
|
input_dim=0,
|
|
**weight_scale_args)
|
|
qzeros = PackedvLLMParameter(
|
|
input_dim=0,
|
|
output_dim=1,
|
|
packed_dim=1,
|
|
packed_factor=self.quant_config.pack_factor,
|
|
**qzeros_args)
|
|
|
|
layer.register_parameter("qweight", qweight)
|
|
layer.register_parameter("g_idx", g_idx)
|
|
layer.register_parameter("scales", scales)
|
|
layer.register_parameter("qzeros", qzeros)
|
|
|
|
self.kernel = kernel_type(mp_linear_kernel_config,
|
|
w_q_param_name="qweight",
|
|
w_s_param_name="scales",
|
|
w_zp_param_name="qzeros",
|
|
w_gidx_param_name="g_idx")
|
|
|
|
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
|
self.kernel.process_weights_after_loading(layer)
|
|
|
|
def apply(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
bias: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
return self.kernel.apply_weights(layer, x, bias)
|
|
|
|
|
|
class GPTQMarlinMoEMethod(FusedMoEMethodBase):
|
|
"""MoE Marlin method with quantization."""
|
|
|
|
def __init__(
|
|
self,
|
|
quant_config: GPTQMarlinConfig,
|
|
moe: FusedMoEConfig,
|
|
) -> None:
|
|
super().__init__(moe)
|
|
self.quant_config = quant_config
|
|
if self.quant_config.quant_type.size_bits == 4:
|
|
self.quant_type = scalar_types.uint4b8
|
|
elif self.quant_config.quant_type.size_bits == 8:
|
|
self.quant_type = scalar_types.uint8b128
|
|
else:
|
|
raise ValueError(
|
|
"GPTQMarlinMoEMethod only supports int4 and int8 now.")
|
|
|
|
def create_weights(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
num_experts: int,
|
|
hidden_size: int,
|
|
intermediate_size_per_partition: int,
|
|
params_dtype: torch.dtype,
|
|
**extra_weight_attrs,
|
|
):
|
|
intermediate_size_full = extra_weight_attrs.pop(
|
|
"intermediate_size_full")
|
|
|
|
self.is_k_full = (not self.quant_config.desc_act) or (
|
|
intermediate_size_per_partition == intermediate_size_full)
|
|
|
|
if self.quant_config.group_size != -1:
|
|
scales_size13 = hidden_size // self.quant_config.group_size
|
|
w2_scales_size = (intermediate_size_full
|
|
if self.quant_config.desc_act else
|
|
intermediate_size_per_partition)
|
|
scales_size2 = (w2_scales_size // self.quant_config.group_size)
|
|
strategy = FusedMoeWeightScaleSupported.GROUP.value
|
|
else:
|
|
scales_size13 = 1
|
|
scales_size2 = 1
|
|
strategy = FusedMoeWeightScaleSupported.CHANNEL.value
|
|
|
|
extra_weight_attrs.update({
|
|
"quant_method": strategy,
|
|
"is_transposed": True
|
|
})
|
|
# Fused gate_up_proj (column parallel)
|
|
w13_qweight = torch.nn.Parameter(
|
|
torch.empty(
|
|
num_experts,
|
|
hidden_size // self.quant_config.pack_factor,
|
|
2 * intermediate_size_per_partition,
|
|
dtype=torch.int32,
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
layer.register_parameter("w13_qweight", w13_qweight)
|
|
set_weight_attrs(w13_qweight, extra_weight_attrs)
|
|
# down_proj (row parallel)
|
|
w2_qweight = torch.nn.Parameter(
|
|
torch.empty(
|
|
num_experts,
|
|
intermediate_size_per_partition //
|
|
self.quant_config.pack_factor,
|
|
hidden_size,
|
|
dtype=torch.int32,
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
layer.register_parameter("w2_qweight", w2_qweight)
|
|
set_weight_attrs(w2_qweight, extra_weight_attrs)
|
|
# up_proj scales
|
|
w13_scales = torch.nn.Parameter(
|
|
torch.empty(num_experts,
|
|
scales_size13,
|
|
2 * intermediate_size_per_partition,
|
|
dtype=params_dtype),
|
|
requires_grad=False,
|
|
)
|
|
layer.register_parameter("w13_scales", w13_scales)
|
|
set_weight_attrs(w13_scales, extra_weight_attrs)
|
|
# down_proj scales
|
|
w2_scales = torch.nn.Parameter(
|
|
torch.empty(num_experts,
|
|
scales_size2,
|
|
hidden_size,
|
|
dtype=params_dtype),
|
|
requires_grad=False,
|
|
)
|
|
layer.register_parameter("w2_scales", w2_scales)
|
|
set_weight_attrs(w2_scales, extra_weight_attrs)
|
|
# dont shard the w2 scales when running act order
|
|
set_weight_attrs(w2_scales,
|
|
{"load_full_w2": self.quant_config.desc_act})
|
|
# up_proj scales
|
|
w13_qzeros = torch.nn.Parameter(
|
|
torch.empty(num_experts,
|
|
scales_size13,
|
|
2 * intermediate_size_per_partition //
|
|
self.quant_config.pack_factor,
|
|
dtype=params_dtype),
|
|
requires_grad=False,
|
|
)
|
|
layer.register_parameter("w13_qzeros", w13_qzeros)
|
|
set_weight_attrs(w13_qzeros, extra_weight_attrs)
|
|
# down_proj scales
|
|
w2_qzeros = torch.nn.Parameter(
|
|
torch.empty(num_experts,
|
|
scales_size2,
|
|
hidden_size // self.quant_config.pack_factor,
|
|
dtype=params_dtype),
|
|
requires_grad=False,
|
|
)
|
|
layer.register_parameter("w2_qzeros", w2_qzeros)
|
|
set_weight_attrs(w2_qzeros, extra_weight_attrs)
|
|
# dont shard the w2 scales when running act order
|
|
set_weight_attrs(w2_qzeros,
|
|
{"load_full_w2": self.quant_config.desc_act})
|
|
w13_g_idx = torch.nn.Parameter(
|
|
torch.empty(
|
|
num_experts,
|
|
hidden_size,
|
|
dtype=torch.int32,
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
layer.register_parameter("w13_g_idx", w13_g_idx)
|
|
set_weight_attrs(w13_g_idx, extra_weight_attrs)
|
|
w2_g_idx = torch.nn.Parameter(
|
|
torch.empty(
|
|
num_experts,
|
|
intermediate_size_per_partition,
|
|
dtype=torch.int32,
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
layer.register_parameter("w2_g_idx", w2_g_idx)
|
|
set_weight_attrs(w2_g_idx, extra_weight_attrs)
|
|
w13_g_idx_sort_indices = torch.nn.Parameter(
|
|
torch.empty(
|
|
num_experts,
|
|
hidden_size,
|
|
dtype=torch.int32,
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
layer.register_parameter("w13_g_idx_sort_indices",
|
|
w13_g_idx_sort_indices)
|
|
set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs)
|
|
w2_g_idx_sort_indices = torch.nn.Parameter(
|
|
torch.empty(
|
|
num_experts,
|
|
intermediate_size_per_partition,
|
|
dtype=torch.int32,
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
layer.register_parameter("w2_g_idx_sort_indices",
|
|
w2_g_idx_sort_indices)
|
|
set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs)
|
|
|
|
device = layer.w13_qweight.device
|
|
layer.workspace = marlin_make_workspace_new(device, 4)
|
|
|
|
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
|
|
|
# Process act_order
|
|
if self.quant_config.desc_act:
|
|
# Get sorting based on g_idx
|
|
num_experts = layer.w13_g_idx.shape[0]
|
|
w13_g_idx_sort_indices = torch.empty_like(layer.w13_g_idx)
|
|
w2_g_idx_sort_indices = torch.empty_like(layer.w2_g_idx)
|
|
w13_sorted_g_idx = torch.empty_like(layer.w13_g_idx)
|
|
w2_sorted_g_idx = torch.empty_like(layer.w2_g_idx)
|
|
for e in range(num_experts):
|
|
w13_g_idx_sort_indices[e] = torch.argsort(
|
|
layer.w13_g_idx[e]).to(torch.int32)
|
|
w2_g_idx_sort_indices[e] = torch.argsort(layer.w2_g_idx[e]).to(
|
|
torch.int32)
|
|
w13_sorted_g_idx[e] = layer.w13_g_idx[e][
|
|
w13_g_idx_sort_indices[e]]
|
|
w2_sorted_g_idx[e] = layer.w2_g_idx[e][
|
|
w2_g_idx_sort_indices[e]]
|
|
replace_parameter(layer, "w13_g_idx", w13_sorted_g_idx)
|
|
replace_parameter(layer, "w2_g_idx", w2_sorted_g_idx)
|
|
replace_parameter(layer, "w13_g_idx_sort_indices",
|
|
w13_g_idx_sort_indices)
|
|
replace_parameter(layer, "w2_g_idx_sort_indices",
|
|
w2_g_idx_sort_indices)
|
|
else:
|
|
# Reset g_idx related tensors
|
|
num_experts = layer.w13_g_idx.shape[0]
|
|
device = layer.w13_g_idx.device
|
|
layer.w13_g_idx = torch.nn.Parameter(
|
|
torch.empty((num_experts, 0), dtype=torch.int32,
|
|
device=device),
|
|
requires_grad=False,
|
|
)
|
|
layer.w2_g_idx = torch.nn.Parameter(
|
|
torch.empty((num_experts, 0), dtype=torch.int32,
|
|
device=device),
|
|
requires_grad=False,
|
|
)
|
|
layer.w13_g_idx_sort_indices = torch.nn.Parameter(
|
|
torch.empty((num_experts, 0), dtype=torch.int32,
|
|
device=device),
|
|
requires_grad=False,
|
|
)
|
|
layer.w2_g_idx_sort_indices = torch.nn.Parameter(
|
|
torch.empty((num_experts, 0), dtype=torch.int32,
|
|
device=device),
|
|
requires_grad=False,
|
|
)
|
|
# Repack weights
|
|
marlin_w13_qweight = ops.gptq_marlin_moe_repack(
|
|
layer.w13_qweight,
|
|
layer.w13_g_idx_sort_indices,
|
|
layer.w13_qweight.shape[1] * self.quant_config.pack_factor,
|
|
layer.w13_qweight.shape[2],
|
|
self.quant_config.quant_type.size_bits,
|
|
)
|
|
replace_parameter(layer, "w13_qweight", marlin_w13_qweight)
|
|
marlin_w2_qweight = ops.gptq_marlin_moe_repack(
|
|
layer.w2_qweight,
|
|
layer.w2_g_idx_sort_indices,
|
|
layer.w2_qweight.shape[1] * self.quant_config.pack_factor,
|
|
layer.w2_qweight.shape[2],
|
|
self.quant_config.quant_type.size_bits,
|
|
)
|
|
replace_parameter(layer, "w2_qweight", marlin_w2_qweight)
|
|
# Repack scales
|
|
marlin_w13_scales = marlin_moe_permute_scales(
|
|
s=layer.w13_scales,
|
|
size_k=layer.intermediate_size_per_partition,
|
|
size_n=layer.w13_scales.shape[2],
|
|
group_size=self.quant_config.group_size,
|
|
)
|
|
replace_parameter(layer, "w13_scales", marlin_w13_scales)
|
|
marlin_w2_scales = marlin_moe_permute_scales(
|
|
s=layer.w2_scales,
|
|
size_k=layer.w2_scales.shape[1] *
|
|
(self.quant_config.group_size if self.quant_config.group_size != -1
|
|
else self.quant_config.pack_factor),
|
|
size_n=layer.w2_scales.shape[2],
|
|
group_size=self.quant_config.group_size,
|
|
)
|
|
replace_parameter(layer, "w2_scales", marlin_w2_scales)
|
|
|
|
if hasattr(layer, "w13_bias") and layer.w13_bias is not None:
|
|
layer.w13_bias.data = marlin_permute_bias(layer.w13_bias)
|
|
|
|
if hasattr(layer, "w2_bias") and layer.w2_bias is not None:
|
|
layer.w2_bias.data = marlin_permute_bias(layer.w2_bias)
|
|
|
|
def apply(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
router_logits: torch.Tensor,
|
|
top_k: int,
|
|
renormalize: bool,
|
|
use_grouped_topk: bool = False,
|
|
topk_group: Optional[int] = None,
|
|
num_expert_group: Optional[int] = None,
|
|
global_num_experts: int = -1,
|
|
expert_map: Optional[torch.Tensor] = None,
|
|
custom_routing_function: Optional[Callable] = None,
|
|
scoring_func: str = "softmax",
|
|
routed_scaling_factor: float = 1.0,
|
|
e_score_correction_bias: Optional[torch.Tensor] = None,
|
|
apply_router_weight_on_input: bool = False,
|
|
activation: str = "silu",
|
|
enable_eplb: bool = False,
|
|
expert_load_view: Optional[torch.Tensor] = None,
|
|
logical_to_physical_map: Optional[torch.Tensor] = None,
|
|
logical_replica_count: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
assert self.fused_experts is None
|
|
|
|
if enable_eplb:
|
|
raise NotImplementedError(
|
|
"EPLB not supported for `GPTQMarlinMoEMethod` yet.")
|
|
|
|
assert activation == "silu", "Only SiLU activation is supported."
|
|
|
|
topk_weights, topk_ids = FusedMoE.select_experts(
|
|
hidden_states=x,
|
|
router_logits=router_logits,
|
|
use_grouped_topk=use_grouped_topk,
|
|
top_k=top_k,
|
|
renormalize=renormalize,
|
|
topk_group=topk_group,
|
|
num_expert_group=num_expert_group,
|
|
custom_routing_function=custom_routing_function,
|
|
scoring_func=scoring_func,
|
|
routed_scaling_factor=routed_scaling_factor,
|
|
e_score_correction_bias=e_score_correction_bias,
|
|
indices_type=self.topk_indices_dtype)
|
|
|
|
return torch.ops.vllm.fused_marlin_moe(
|
|
x,
|
|
layer.w13_qweight,
|
|
layer.w2_qweight,
|
|
getattr(layer, "w13_bias", None),
|
|
getattr(layer, "w2_bias", None),
|
|
layer.w13_scales,
|
|
layer.w2_scales,
|
|
router_logits,
|
|
topk_weights,
|
|
topk_ids,
|
|
quant_type_id=self.quant_type.id,
|
|
apply_router_weight_on_input=apply_router_weight_on_input,
|
|
global_num_experts=global_num_experts,
|
|
expert_map=expert_map,
|
|
g_idx1=layer.w13_g_idx,
|
|
g_idx2=layer.w2_g_idx,
|
|
sort_indices1=layer.w13_g_idx_sort_indices,
|
|
sort_indices2=layer.w2_g_idx_sort_indices,
|
|
workspace=layer.workspace,
|
|
is_k_full=self.is_k_full)
|