vllm/tests/kernels/mamba/test_mamba_mixer2.py
Harry Mellor d6953beb91
Convert formatting to use ruff instead of yapf + isort (#26247)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-05 07:06:22 -07:00

139 lines
3.9 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import unittest
import pytest
import torch
from tests.utils import multi_gpu_test
from vllm.distributed.parallel_state import (
init_distributed_environment,
initialize_model_parallel,
)
from vllm.model_executor.layers.mamba.mamba_mixer2 import Mixer2RMSNormGated
from vllm.platforms import current_platform
from vllm.utils import update_environment_variables
@multi_gpu_test(num_gpus=2)
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize("seq_len", [128])
@pytest.mark.parametrize(
"hidden_size_n_groups",
[
(64, 1),
(64, 2),
(64, 4), # hidden_size be divisible by num_gpus
(100, 5), # and n_groups must divide hidden_size
],
)
@pytest.mark.parametrize("dtype", [torch.float16])
def test_mixer2_gated_norm_multi_gpu(
batch_size: int,
seq_len: int,
hidden_size_n_groups: tuple[int, int],
dtype: torch.dtype,
device: str = "cuda",
):
hidden_size, n_groups = hidden_size_n_groups
num_processes = 2
def run_torch_spawn(fn, nprocs):
# need to use torch.mp.spawn otherwise will have problems with
# torch.distributed and cuda
torch.multiprocessing.spawn(
fn,
args=(
num_processes,
batch_size,
seq_len,
hidden_size,
n_groups,
dtype,
device,
),
nprocs=nprocs,
)
run_torch_spawn(mixer2_gated_norm_tensor_parallel, 2)
def mixer2_gated_norm_tensor_parallel(
local_rank: int,
world_size: int,
batch_size: int,
seq_len: int,
hidden_size: int,
n_groups: int,
dtype: torch.dtype,
device: str,
):
current_platform.seed_everything(0)
device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(device)
torch.set_default_device(device)
torch.set_default_dtype(dtype)
update_environment_variables(
{
"RANK": str(local_rank),
"LOCAL_RANK": str(local_rank),
"WORLD_SIZE": str(world_size),
"MASTER_ADDR": "localhost",
"MASTER_PORT": "12345",
}
)
# initialize distributed
init_distributed_environment()
initialize_model_parallel(tensor_model_parallel_size=world_size)
# create random weights an inputs
weight = torch.rand((hidden_size,), dtype=dtype, device=device)
hidden_states = torch.randn(batch_size, seq_len, hidden_size)
gate_states = torch.randn(batch_size, seq_len, hidden_size)
# create gated-norm with TP
mixer = Mixer2RMSNormGated(
full_hidden_size=hidden_size,
full_n_groups=n_groups,
)
mixer.weight.weight_loader(mixer.weight, weight) # load
# create gated-norm without TP to compute reference
# - utilize mock patching to disable TP when
with (
unittest.mock.patch(
"vllm.model_executor.layers.mamba.mamba_mixer2."
"get_tensor_model_parallel_world_size",
return_value=1,
),
unittest.mock.patch(
"vllm.model_executor.layers.mamba.mamba_mixer2."
"get_tensor_model_parallel_rank",
return_value=0,
),
):
mixer_single_gpu = Mixer2RMSNormGated(
full_hidden_size=hidden_size,
full_n_groups=n_groups,
)
# assign weight to single-gpu mixer
mixer_single_gpu.weight.data = weight
# generate and compare
N = hidden_size // world_size
output = mixer(
hidden_states[..., local_rank * N : (local_rank + 1) * N],
gate_states[..., local_rank * N : (local_rank + 1) * N],
)
ref_output = mixer_single_gpu(hidden_states, gate_states)
torch.testing.assert_close(
output,
ref_output[..., local_rank * N : (local_rank + 1) * N],
atol=5e-3,
rtol=1e-3,
)