mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 03:44:56 +08:00
143 lines
5.1 KiB
Python
143 lines
5.1 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import tempfile
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import numpy.typing as npt
|
|
import pytest
|
|
from PIL import Image
|
|
|
|
from vllm.assets.base import get_vllm_public_assets
|
|
from vllm.assets.video import video_to_ndarrays, video_to_pil_images_list
|
|
from vllm.multimodal.image import ImageMediaIO
|
|
from vllm.multimodal.video import VIDEO_LOADER_REGISTRY, VideoLoader, VideoMediaIO
|
|
|
|
from .utils import cosine_similarity, create_video_from_image, normalize_image
|
|
|
|
pytestmark = pytest.mark.cpu_test
|
|
|
|
NUM_FRAMES = 10
|
|
FAKE_OUTPUT_1 = np.random.rand(NUM_FRAMES, 1280, 720, 3)
|
|
FAKE_OUTPUT_2 = np.random.rand(NUM_FRAMES, 1280, 720, 3)
|
|
|
|
|
|
@VIDEO_LOADER_REGISTRY.register("test_video_loader_1")
|
|
class TestVideoLoader1(VideoLoader):
|
|
@classmethod
|
|
def load_bytes(cls, data: bytes, num_frames: int = -1) -> npt.NDArray:
|
|
return FAKE_OUTPUT_1
|
|
|
|
|
|
@VIDEO_LOADER_REGISTRY.register("test_video_loader_2")
|
|
class TestVideoLoader2(VideoLoader):
|
|
@classmethod
|
|
def load_bytes(cls, data: bytes, num_frames: int = -1) -> npt.NDArray:
|
|
return FAKE_OUTPUT_2
|
|
|
|
|
|
def test_video_loader_registry():
|
|
custom_loader_1 = VIDEO_LOADER_REGISTRY.load("test_video_loader_1")
|
|
output_1 = custom_loader_1.load_bytes(b"test")
|
|
np.testing.assert_array_equal(output_1, FAKE_OUTPUT_1)
|
|
|
|
custom_loader_2 = VIDEO_LOADER_REGISTRY.load("test_video_loader_2")
|
|
output_2 = custom_loader_2.load_bytes(b"test")
|
|
np.testing.assert_array_equal(output_2, FAKE_OUTPUT_2)
|
|
|
|
|
|
def test_video_loader_type_doesnt_exist():
|
|
with pytest.raises(AssertionError):
|
|
VIDEO_LOADER_REGISTRY.load("non_existing_video_loader")
|
|
|
|
|
|
@VIDEO_LOADER_REGISTRY.register("assert_10_frames_1_fps")
|
|
class Assert10Frames1FPSVideoLoader(VideoLoader):
|
|
@classmethod
|
|
def load_bytes(
|
|
cls, data: bytes, num_frames: int = -1, fps: float = -1.0, **kwargs
|
|
) -> npt.NDArray:
|
|
assert num_frames == 10, "bad num_frames"
|
|
assert fps == 1.0, "bad fps"
|
|
return FAKE_OUTPUT_2
|
|
|
|
|
|
def test_video_media_io_kwargs(monkeypatch: pytest.MonkeyPatch):
|
|
with monkeypatch.context() as m:
|
|
m.setenv("VLLM_VIDEO_LOADER_BACKEND", "assert_10_frames_1_fps")
|
|
imageio = ImageMediaIO()
|
|
|
|
# Verify that different args pass/fail assertions as expected.
|
|
videoio = VideoMediaIO(imageio, **{"num_frames": 10, "fps": 1.0})
|
|
_ = videoio.load_bytes(b"test")
|
|
|
|
videoio = VideoMediaIO(
|
|
imageio, **{"num_frames": 10, "fps": 1.0, "not_used": "not_used"}
|
|
)
|
|
_ = videoio.load_bytes(b"test")
|
|
|
|
with pytest.raises(AssertionError, match="bad num_frames"):
|
|
videoio = VideoMediaIO(imageio, **{})
|
|
_ = videoio.load_bytes(b"test")
|
|
|
|
with pytest.raises(AssertionError, match="bad num_frames"):
|
|
videoio = VideoMediaIO(imageio, **{"num_frames": 9, "fps": 1.0})
|
|
_ = videoio.load_bytes(b"test")
|
|
|
|
with pytest.raises(AssertionError, match="bad fps"):
|
|
videoio = VideoMediaIO(imageio, **{"num_frames": 10, "fps": 2.0})
|
|
_ = videoio.load_bytes(b"test")
|
|
|
|
|
|
@pytest.mark.parametrize("is_color", [True, False])
|
|
@pytest.mark.parametrize("fourcc, ext", [("mp4v", "mp4"), ("XVID", "avi")])
|
|
def test_opencv_video_io_colorspace(is_color: bool, fourcc: str, ext: str):
|
|
"""
|
|
Test all functions that use OpenCV for video I/O return RGB format.
|
|
Both RGB and grayscale videos are tested.
|
|
"""
|
|
image_path = get_vllm_public_assets(
|
|
filename="stop_sign.jpg", s3_prefix="vision_model_images"
|
|
)
|
|
image = Image.open(image_path)
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
if not is_color:
|
|
image_path = f"{tmpdir}/test_grayscale_image.png"
|
|
image = image.convert("L")
|
|
image.save(image_path)
|
|
# Convert to gray RGB for comparison
|
|
image = image.convert("RGB")
|
|
video_path = f"{tmpdir}/test_RGB_video.{ext}"
|
|
create_video_from_image(
|
|
image_path,
|
|
video_path,
|
|
num_frames=2,
|
|
is_color=is_color,
|
|
fourcc=fourcc,
|
|
)
|
|
|
|
frames = video_to_ndarrays(video_path)
|
|
for frame in frames:
|
|
sim = cosine_similarity(
|
|
normalize_image(np.array(frame)), normalize_image(np.array(image))
|
|
)
|
|
assert np.sum(np.isnan(sim)) / sim.size < 0.001
|
|
assert np.nanmean(sim) > 0.99
|
|
|
|
pil_frames = video_to_pil_images_list(video_path)
|
|
for frame in pil_frames:
|
|
sim = cosine_similarity(
|
|
normalize_image(np.array(frame)), normalize_image(np.array(image))
|
|
)
|
|
assert np.sum(np.isnan(sim)) / sim.size < 0.001
|
|
assert np.nanmean(sim) > 0.99
|
|
|
|
io_frames, _ = VideoMediaIO(ImageMediaIO()).load_file(Path(video_path))
|
|
for frame in io_frames:
|
|
sim = cosine_similarity(
|
|
normalize_image(np.array(frame)), normalize_image(np.array(image))
|
|
)
|
|
assert np.sum(np.isnan(sim)) / sim.size < 0.001
|
|
assert np.nanmean(sim) > 0.99
|