mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-21 05:05:01 +08:00
320 lines
13 KiB
Python
320 lines
13 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import hashlib
|
|
from dataclasses import InitVar, field
|
|
from typing import Any, Literal
|
|
|
|
from pydantic import SkipValidation, model_validator
|
|
from pydantic.dataclasses import dataclass
|
|
from typing_extensions import Self
|
|
|
|
from vllm.config.utils import config
|
|
from vllm.logger import init_logger
|
|
from vllm.utils import (
|
|
DEFAULT_MAX_NUM_BATCHED_TOKENS,
|
|
MULTIMODAL_MODEL_MAX_NUM_BATCHED_TOKENS,
|
|
POOLING_MODEL_MAX_NUM_BATCHED_TOKENS,
|
|
)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
RunnerType = Literal["generate", "pooling", "draft"]
|
|
SchedulerPolicy = Literal["fcfs", "priority"]
|
|
|
|
|
|
@config
|
|
@dataclass
|
|
class SchedulerConfig:
|
|
"""Scheduler configuration."""
|
|
|
|
runner_type: RunnerType = "generate"
|
|
"""The runner type to launch for the model."""
|
|
|
|
max_num_batched_tokens: SkipValidation[int] = None # type: ignore
|
|
"""Maximum number of tokens to be processed in a single iteration.
|
|
|
|
This config has no static default. If left unspecified by the user, it will
|
|
be set in `EngineArgs.create_engine_config` based on the usage context."""
|
|
|
|
max_num_seqs: SkipValidation[int] = None # type: ignore
|
|
"""Maximum number of sequences to be processed in a single iteration.
|
|
|
|
This config has no static default. If left unspecified by the user, it will
|
|
be set in `EngineArgs.create_engine_config` based on the usage context."""
|
|
|
|
max_model_len: SkipValidation[int] = None # type: ignore
|
|
"""Maximum length of a sequence (including prompt and generated text). This
|
|
is primarily set in `ModelConfig` and that value should be manually
|
|
duplicated here."""
|
|
|
|
max_num_partial_prefills: int = 1
|
|
"""For chunked prefill, the maximum number of sequences that can be
|
|
partially prefilled concurrently."""
|
|
|
|
max_long_partial_prefills: int = 1
|
|
"""For chunked prefill, the maximum number of prompts longer than
|
|
long_prefill_token_threshold that will be prefilled concurrently. Setting
|
|
this less than max_num_partial_prefills will allow shorter prompts to jump
|
|
the queue in front of longer prompts in some cases, improving latency."""
|
|
|
|
long_prefill_token_threshold: int = 0
|
|
"""For chunked prefill, a request is considered long if the prompt is
|
|
longer than this number of tokens."""
|
|
|
|
num_lookahead_slots: int = 0
|
|
"""The number of slots to allocate per sequence per
|
|
step, beyond the known token ids. This is used in speculative
|
|
decoding to store KV activations of tokens which may or may not be
|
|
accepted.
|
|
|
|
NOTE: This will be replaced by speculative config in the future; it is
|
|
present to enable correctness tests until then."""
|
|
|
|
cuda_graph_sizes: list[int] = field(default_factory=list)
|
|
"""Cuda graph capture sizes
|
|
1. if none provided, then default set to [min(max_num_seqs * 2, 512)]
|
|
2. if one value is provided, then the capture list would follow the
|
|
pattern: [1, 2, 4] + [i for i in range(8, cuda_graph_sizes + 1, 8)]
|
|
3. more than one value (e.g. 1 2 128) is provided, then the capture list
|
|
will follow the provided list."""
|
|
|
|
enable_chunked_prefill: SkipValidation[bool] = None # type: ignore
|
|
"""If True, prefill requests can be chunked based
|
|
on the remaining max_num_batched_tokens."""
|
|
|
|
is_multimodal_model: bool = False
|
|
"""True if the model is multimodal."""
|
|
|
|
is_encoder_decoder: InitVar[bool] = False
|
|
"""True if the model is an encoder-decoder model.
|
|
|
|
Note: This is stored in the ModelConfig, and is used only here to
|
|
disable chunked prefill and prefix caching for encoder-decoder models.
|
|
"""
|
|
|
|
# TODO (ywang96): Make this configurable.
|
|
max_num_encoder_input_tokens: int = field(init=False)
|
|
"""Multimodal encoder compute budget, only used in V1.
|
|
|
|
NOTE: This is not currently configurable. It will be overridden by
|
|
max_num_batched_tokens in case max multimodal embedding size is larger."""
|
|
|
|
# TODO (ywang96): Make this configurable.
|
|
encoder_cache_size: int = field(init=False)
|
|
"""Multimodal encoder cache size, only used in V1.
|
|
|
|
NOTE: This is not currently configurable. It will be overridden by
|
|
max_num_batched_tokens in case max multimodal embedding size is larger."""
|
|
|
|
send_delta_data: bool = False
|
|
"""Private API. If used, scheduler sends delta data to
|
|
workers instead of an entire data. It should be enabled only
|
|
when SPMD worker architecture is enabled. I.e.,
|
|
VLLM_USE_RAY_SPMD_WORKER=1"""
|
|
|
|
policy: SchedulerPolicy = "fcfs"
|
|
"""The scheduling policy to use:\n
|
|
- "fcfs" means first come first served, i.e. requests are handled in order
|
|
of arrival.\n
|
|
- "priority" means requests are handled based on given priority (lower
|
|
value means earlier handling) and time of arrival deciding any ties)."""
|
|
|
|
chunked_prefill_enabled: bool = field(init=False)
|
|
"""True if chunked prefill is enabled."""
|
|
|
|
disable_chunked_mm_input: bool = False
|
|
"""If set to true and chunked prefill is enabled, we do not want to
|
|
partially schedule a multimodal item. Only used in V1
|
|
This ensures that if a request has a mixed prompt
|
|
(like text tokens TTTT followed by image tokens IIIIIIIIII) where only
|
|
some image tokens can be scheduled (like TTTTIIIII, leaving IIIII),
|
|
it will be scheduled as TTTT in one step and IIIIIIIIII in the next."""
|
|
|
|
# scheduler class or path. "vllm.core.scheduler.Scheduler" (default)
|
|
# or "mod.custom_class".
|
|
scheduler_cls: str | type[object] = "vllm.core.scheduler.Scheduler"
|
|
"""The scheduler class to use. "vllm.core.scheduler.Scheduler" is the
|
|
default scheduler. Can be a class directly or the path to a class of form
|
|
"mod.custom_class"."""
|
|
|
|
disable_hybrid_kv_cache_manager: bool = False
|
|
"""If set to True, KV cache manager will allocate the same size of KV cache
|
|
for all attention layers even if there are multiple type of attention layers
|
|
like full attention and sliding window attention.
|
|
"""
|
|
|
|
async_scheduling: bool = False
|
|
"""EXPERIMENTAL: If set to True, perform async scheduling. This may help
|
|
reduce the CPU overheads, leading to better latency and throughput. However,
|
|
async scheduling is currently not supported with some features such as
|
|
structured outputs, speculative decoding, and pipeline parallelism.
|
|
"""
|
|
|
|
def compute_hash(self) -> str:
|
|
"""
|
|
WARNING: Whenever a new field is added to this config,
|
|
ensure that it is included in the factors list if
|
|
it affects the computation graph.
|
|
|
|
Provide a hash that uniquely identifies all the configs
|
|
that affect the structure of the computation
|
|
graph from input ids/embeddings to the final hidden states,
|
|
excluding anything before input ids/embeddings and after
|
|
the final hidden states.
|
|
"""
|
|
# no factors to consider.
|
|
# this config will not affect the computation graph.
|
|
factors: list[Any] = []
|
|
hash_str = hashlib.md5(str(factors).encode(), usedforsecurity=False).hexdigest()
|
|
return hash_str
|
|
|
|
def __post_init__(self, is_encoder_decoder: bool) -> None:
|
|
if self.max_model_len is None:
|
|
self.max_model_len = 8192
|
|
|
|
if self.max_num_seqs is None:
|
|
self.max_num_seqs = 128
|
|
|
|
if is_encoder_decoder:
|
|
# Chunked prefill should be disabled for encoder-decoder models.
|
|
self.disable_chunked_mm_input = True
|
|
self.chunked_prefill_enabled = False
|
|
self.enable_chunked_prefill = False
|
|
self.long_prefill_token_threshold = 0
|
|
logger.info(
|
|
"Encoder-decoder models do not support chunked prefill nor"
|
|
" prefix caching; disabling both."
|
|
)
|
|
|
|
if self.max_num_batched_tokens is None:
|
|
if self.enable_chunked_prefill:
|
|
self.max_num_batched_tokens = DEFAULT_MAX_NUM_BATCHED_TOKENS
|
|
else:
|
|
# If max_model_len is too short, use
|
|
# DEFAULT_MAX_NUM_BATCHED_TOKENS as the default value
|
|
# for higher throughput.
|
|
self.max_num_batched_tokens = max(
|
|
self.max_model_len, DEFAULT_MAX_NUM_BATCHED_TOKENS
|
|
)
|
|
|
|
if self.runner_type == "pooling":
|
|
# Choose specific value for higher throughput
|
|
self.max_num_batched_tokens = max(
|
|
self.max_num_batched_tokens,
|
|
POOLING_MODEL_MAX_NUM_BATCHED_TOKENS,
|
|
)
|
|
if self.is_multimodal_model:
|
|
# The value needs to be at least the number of multimodal tokens
|
|
self.max_num_batched_tokens = max(
|
|
self.max_num_batched_tokens,
|
|
MULTIMODAL_MODEL_MAX_NUM_BATCHED_TOKENS,
|
|
)
|
|
|
|
# When using default settings,
|
|
# Ensure max_num_batched_tokens does not exceed model limit.
|
|
# Some models (e.g., Whisper) have embeddings tied to max length.
|
|
self.max_num_batched_tokens = min(
|
|
self.max_num_seqs * self.max_model_len, self.max_num_batched_tokens
|
|
)
|
|
|
|
self.max_num_encoder_input_tokens = self.max_num_batched_tokens
|
|
self.encoder_cache_size = self.max_num_batched_tokens
|
|
|
|
if self.enable_chunked_prefill:
|
|
logger.info(
|
|
"Chunked prefill is enabled with max_num_batched_tokens=%d.",
|
|
self.max_num_batched_tokens,
|
|
)
|
|
|
|
self.chunked_prefill_enabled = self.enable_chunked_prefill
|
|
if self.max_num_partial_prefills > 1:
|
|
if self.long_prefill_token_threshold == 0:
|
|
self.long_prefill_token_threshold = int(self.max_model_len * 0.04)
|
|
|
|
logger.info(
|
|
"Concurrent partial prefills enabled with "
|
|
"max_num_partial_prefills=%d, max_long_partial_prefills=%d, "
|
|
"long_prefill_token_threshold=%d",
|
|
self.max_num_partial_prefills,
|
|
self.max_long_partial_prefills,
|
|
self.long_prefill_token_threshold,
|
|
)
|
|
|
|
# NOTE: Default set cuda_graph_sizes to [min(max_num_seqs * 2, 512)].
|
|
# This avoids OOM in tight memory scenarios with small max_num_seqs,
|
|
# and prevents capture of many large graphs (>512) that would greatly
|
|
# increase startup time with limited performance benefit.
|
|
if not self.cuda_graph_sizes:
|
|
self.cuda_graph_sizes = [min(self.max_num_seqs * 2, 512)]
|
|
|
|
if self.async_scheduling:
|
|
self.scheduler_cls = "vllm.v1.core.sched.async_scheduler.AsyncScheduler"
|
|
|
|
@model_validator(mode="after")
|
|
def _verify_args(self) -> Self:
|
|
if (
|
|
self.max_num_batched_tokens < self.max_model_len
|
|
and not self.chunked_prefill_enabled
|
|
):
|
|
raise ValueError(
|
|
f"max_num_batched_tokens ({self.max_num_batched_tokens}) is "
|
|
f"smaller than max_model_len ({self.max_model_len}). "
|
|
"This effectively limits the maximum sequence length to "
|
|
"max_num_batched_tokens and makes vLLM reject longer "
|
|
"sequences. Please increase max_num_batched_tokens or "
|
|
"decrease max_model_len."
|
|
)
|
|
|
|
if self.max_num_batched_tokens < self.max_num_seqs:
|
|
raise ValueError(
|
|
f"max_num_batched_tokens ({self.max_num_batched_tokens}) must "
|
|
"be greater than or equal to max_num_seqs "
|
|
f"({self.max_num_seqs})."
|
|
)
|
|
|
|
if self.max_num_batched_tokens > self.max_num_seqs * self.max_model_len:
|
|
logger.warning(
|
|
"max_num_batched_tokens (%d) exceeds max_num_seqs "
|
|
"* max_model_len (%d). This may lead to unexpected behavior.",
|
|
self.max_num_batched_tokens,
|
|
self.max_num_seqs * self.max_model_len,
|
|
)
|
|
|
|
if self.num_lookahead_slots < 0:
|
|
raise ValueError(
|
|
"num_lookahead_slots "
|
|
f"({self.num_lookahead_slots}) must be greater than or "
|
|
"equal to 0."
|
|
)
|
|
|
|
if self.max_num_partial_prefills < 1:
|
|
raise ValueError(
|
|
f"max_num_partial_prefills ({self.max_num_partial_prefills}) "
|
|
"must be greater than or equal to 1."
|
|
)
|
|
elif self.max_num_partial_prefills > 1:
|
|
if not self.chunked_prefill_enabled:
|
|
raise ValueError(
|
|
"Chunked prefill must be enabled to set "
|
|
"max_num_partial_prefills > 1."
|
|
)
|
|
|
|
if self.long_prefill_token_threshold > self.max_model_len:
|
|
raise ValueError(
|
|
"long_prefill_token_threshold "
|
|
f"({self.long_prefill_token_threshold}) cannot be greater "
|
|
f"than the max_model_len ({self.max_model_len})."
|
|
)
|
|
|
|
if (self.max_long_partial_prefills < 1) or (
|
|
self.max_long_partial_prefills > self.max_num_partial_prefills
|
|
):
|
|
raise ValueError(
|
|
f"max_long_partial_prefills ({self.max_long_partial_prefills}) "
|
|
"must be greater than or equal to 1 and less than or equal to "
|
|
f"max_num_partial_prefills ({self.max_num_partial_prefills})."
|
|
)
|
|
|
|
return self
|