365 lines
14 KiB
Python

# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/bloom/modeling_bloom.py
# Copyright 2023 The vLLM team.
# Copyright 2022 HuggingFace Inc. team and BigScience workshop.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only BLOOM model compatible with HuggingFace weights."""
import math
from typing import Iterable, List, Optional, Tuple, Union
import torch
from torch import nn
from transformers import BloomConfig
from vllm.attention import Attention, AttentionMetadata
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig
from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size)
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from .interfaces import SupportsPP
from .utils import (is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers)
def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor:
closest_power_of_2 = 2**math.floor(math.log2(total_num_heads))
base = torch.tensor(
2**(-(2**-(math.log2(closest_power_of_2) - 3))),
dtype=torch.float32,
)
powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32)
slopes = torch.pow(base, powers)
if closest_power_of_2 != total_num_heads:
extra_base = torch.tensor(
2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))),
dtype=torch.float32,
)
num_remaining_heads = min(closest_power_of_2,
total_num_heads - closest_power_of_2)
extra_powers = torch.arange(start=1,
end=1 + 2 * num_remaining_heads,
step=2,
dtype=torch.int32)
slopes = torch.cat(
[slopes, torch.pow(extra_base, extra_powers)], dim=0)
return slopes
class BloomAttention(nn.Module):
def __init__(
self,
config: BloomConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.hidden_size = config.hidden_size
self.total_num_heads = config.n_head
self.head_dim = self.hidden_size // self.total_num_heads
assert self.head_dim * self.total_num_heads == self.hidden_size
tp_world_size = get_tensor_model_parallel_world_size()
assert self.total_num_heads % tp_world_size == 0
self.num_heads = self.total_num_heads // tp_world_size
self.query_key_value = QKVParallelLinear(
self.hidden_size,
self.head_dim,
self.total_num_heads,
bias=True,
quant_config=quant_config,
)
self.dense = RowParallelLinear(
self.hidden_size,
self.hidden_size,
bias=True,
quant_config=quant_config,
)
# Create the alibi slopes and slice them.
tp_rank = get_tensor_model_parallel_rank()
head_start = tp_rank * self.num_heads
head_end = (tp_rank + 1) * self.num_heads
alibi_slopes = _get_alibi_slopes(self.total_num_heads)
alibi_slopes = alibi_slopes[head_start:head_end].tolist()
scaling = self.head_dim**-0.5
self.attn = Attention(self.num_heads,
self.head_dim,
scaling,
alibi_slopes=alibi_slopes,
cache_config=cache_config,
quant_config=quant_config)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
del position_ids # Unused.
qkv, _ = self.query_key_value(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
output, _ = self.dense(attn_output)
return output
class BloomMLP(nn.Module):
def __init__(
self,
config: BloomConfig,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
hidden_size = config.hidden_size
self.dense_h_to_4h = ColumnParallelLinear(
hidden_size,
4 * hidden_size,
quant_config=quant_config,
)
self.gelu_impl = get_act_fn("gelu", quant_config, 4 * hidden_size)
self.dense_4h_to_h = RowParallelLinear(
4 * hidden_size,
hidden_size,
quant_config=quant_config,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x, _ = self.dense_h_to_4h(x)
x = self.gelu_impl(x)
x, _ = self.dense_4h_to_h(x)
return x
class BloomBlock(nn.Module):
def __init__(
self,
config: BloomConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
hidden_size = config.hidden_size
self.input_layernorm = nn.LayerNorm(hidden_size,
eps=config.layer_norm_epsilon)
self.self_attention = BloomAttention(config, cache_config,
quant_config)
self.post_attention_layernorm = nn.LayerNorm(
hidden_size, eps=config.layer_norm_epsilon)
self.mlp = BloomMLP(config, quant_config)
self.apply_residual_connection_post_layernorm = (
config.apply_residual_connection_post_layernorm)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
# Layer norm at the beginning of the transformer layer.
layernorm_output = self.input_layernorm(hidden_states)
# Layer norm post the self attention.
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = hidden_states
# Self attention.
attention_output = self.self_attention(
position_ids=position_ids,
hidden_states=layernorm_output,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
)
attention_output = attention_output + residual
layernorm_output = self.post_attention_layernorm(attention_output)
# Get residual
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = attention_output
# MLP.
output = self.mlp(layernorm_output) + residual
return output
@support_torch_compile
class BloomModel(nn.Module):
def __init__(
self,
config: BloomConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.embed_dim = config.hidden_size
# Embedding + LN Embedding
self.word_embeddings = VocabParallelEmbedding(
config.vocab_size,
self.embed_dim,
)
self.word_embeddings_layernorm = nn.LayerNorm(
self.embed_dim, eps=config.layer_norm_epsilon)
# Transformer blocks
self.start_layer, self.end_layer, self.h = make_layers(
config.num_hidden_layers,
lambda prefix: BloomBlock(config, cache_config, quant_config),
prefix=f"{prefix}.h")
# Final Layer Norm
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(["hidden_states"],
config.hidden_size))
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.word_embeddings(input_ids)
hidden_states = self.word_embeddings_layernorm(hidden_states)
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
for i in range(self.start_layer, self.end_layer):
layer = self.h[i]
hidden_states = layer(
position_ids,
hidden_states,
kv_caches[i - self.start_layer],
attn_metadata,
)
if not get_pp_group().is_last_rank:
return IntermediateTensors({"hidden_states": hidden_states})
hidden_states = self.ln_f(hidden_states)
return hidden_states
class BloomForCausalLM(nn.Module, SupportsPP):
def __init__(
self,
config: BloomConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.config = config
self.quant_config = quant_config
self.transformer = BloomModel(config, cache_config, quant_config)
if self.config.tie_word_embeddings:
self.lm_head = self.transformer.word_embeddings
else:
self.lm_head = ParallelLMHead(self.config.vocab_size,
self.config.hidden_size)
self.logits_processor = LogitsProcessor(config.vocab_size)
self.sampler = Sampler()
self.make_empty_intermediate_tensors = (
self.transformer.make_empty_intermediate_tensors)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.transformer(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in weights:
if name == "lm_head.weight":
continue
if not name.startswith("transformer."):
name = "transformer." + name
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
if "query_key_value" in name:
# NOTE: BLOOM's fused QKV's output_dim has the shape of
# (num_heads * 3 * head_size), while the
# required shape is (3 * num_heads * head_size).
# Thus, we need weight conversion.
output_dim = getattr(param, "output_dim", None)
num_heads = self.config.num_attention_heads
if output_dim is not None:
loaded_weight_shape = loaded_weight.shape
loaded_weight = loaded_weight.view(
loaded_weight_shape[:output_dim] + (num_heads, 3, -1) +
loaded_weight_shape[output_dim + 1:])
loaded_weight = loaded_weight.transpose(
output_dim, output_dim + 1)
loaded_weight = loaded_weight.reshape(loaded_weight_shape)
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)