vllm/vllm/engine/arg_utils.py
zhaoyang-star 9090bf02e7
Support FP8-E5M2 KV Cache (#2279)
Co-authored-by: zhaoyang <zhao.yang16@zte.com.cn>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-01-28 16:43:54 -08:00

327 lines
15 KiB
Python

import argparse
import dataclasses
from dataclasses import dataclass
from typing import Optional, Tuple
from vllm.config import (CacheConfig, ModelConfig, ParallelConfig,
SchedulerConfig, LoRAConfig)
@dataclass
class EngineArgs:
"""Arguments for vLLM engine."""
model: str
tokenizer: Optional[str] = None
tokenizer_mode: str = 'auto'
trust_remote_code: bool = False
download_dir: Optional[str] = None
load_format: str = 'auto'
dtype: str = 'auto'
kv_cache_dtype: str = 'auto'
seed: int = 0
max_model_len: Optional[int] = None
worker_use_ray: bool = False
pipeline_parallel_size: int = 1
tensor_parallel_size: int = 1
max_parallel_loading_workers: Optional[int] = None
block_size: int = 16
swap_space: int = 4 # GiB
gpu_memory_utilization: float = 0.90
max_num_batched_tokens: Optional[int] = None
max_num_seqs: int = 256
max_paddings: int = 256
disable_log_stats: bool = False
revision: Optional[str] = None
tokenizer_revision: Optional[str] = None
quantization: Optional[str] = None
enforce_eager: bool = False
max_context_len_to_capture: int = 8192
disable_custom_all_reduce: bool = False
enable_lora: bool = False
max_loras: int = 1
max_lora_rank: int = 16
lora_extra_vocab_size: int = 256
lora_dtype = 'auto'
max_cpu_loras: Optional[int] = None
def __post_init__(self):
if self.tokenizer is None:
self.tokenizer = self.model
@staticmethod
def add_cli_args(
parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
"""Shared CLI arguments for vLLM engine."""
# NOTE: If you update any of the arguments below, please also
# make sure to update docs/source/models/engine_args.rst
# Model arguments
parser.add_argument(
'--model',
type=str,
default='facebook/opt-125m',
help='name or path of the huggingface model to use')
parser.add_argument(
'--tokenizer',
type=str,
default=EngineArgs.tokenizer,
help='name or path of the huggingface tokenizer to use')
parser.add_argument(
'--revision',
type=str,
default=None,
help='the specific model version to use. It can be a branch '
'name, a tag name, or a commit id. If unspecified, will use '
'the default version.')
parser.add_argument(
'--tokenizer-revision',
type=str,
default=None,
help='the specific tokenizer version to use. It can be a branch '
'name, a tag name, or a commit id. If unspecified, will use '
'the default version.')
parser.add_argument('--tokenizer-mode',
type=str,
default=EngineArgs.tokenizer_mode,
choices=['auto', 'slow'],
help='tokenizer mode. "auto" will use the fast '
'tokenizer if available, and "slow" will '
'always use the slow tokenizer.')
parser.add_argument('--trust-remote-code',
action='store_true',
help='trust remote code from huggingface')
parser.add_argument('--download-dir',
type=str,
default=EngineArgs.download_dir,
help='directory to download and load the weights, '
'default to the default cache dir of '
'huggingface')
parser.add_argument(
'--load-format',
type=str,
default=EngineArgs.load_format,
choices=['auto', 'pt', 'safetensors', 'npcache', 'dummy'],
help='The format of the model weights to load. '
'"auto" will try to load the weights in the safetensors format '
'and fall back to the pytorch bin format if safetensors format '
'is not available. '
'"pt" will load the weights in the pytorch bin format. '
'"safetensors" will load the weights in the safetensors format. '
'"npcache" will load the weights in pytorch format and store '
'a numpy cache to speed up the loading. '
'"dummy" will initialize the weights with random values, '
'which is mainly for profiling.')
parser.add_argument(
'--dtype',
type=str,
default=EngineArgs.dtype,
choices=[
'auto', 'half', 'float16', 'bfloat16', 'float', 'float32'
],
help='data type for model weights and activations. '
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
parser.add_argument(
'--kv-cache-dtype',
type=str,
choices=['auto', 'fp8_e5m2'],
default='auto',
help='Data type for kv cache storage. If "auto", will use model '
'data type. Note FP8 is not supported when cuda version is '
'lower than 11.8.')
parser.add_argument('--max-model-len',
type=int,
default=None,
help='model context length. If unspecified, '
'will be automatically derived from the model.')
# Parallel arguments
parser.add_argument('--worker-use-ray',
action='store_true',
help='use Ray for distributed serving, will be '
'automatically set when using more than 1 GPU')
parser.add_argument('--pipeline-parallel-size',
'-pp',
type=int,
default=EngineArgs.pipeline_parallel_size,
help='number of pipeline stages')
parser.add_argument('--tensor-parallel-size',
'-tp',
type=int,
default=EngineArgs.tensor_parallel_size,
help='number of tensor parallel replicas')
parser.add_argument(
'--max-parallel-loading-workers',
type=int,
help='load model sequentially in multiple batches, '
'to avoid RAM OOM when using tensor '
'parallel and large models')
# KV cache arguments
parser.add_argument('--block-size',
type=int,
default=EngineArgs.block_size,
choices=[8, 16, 32],
help='token block size')
# TODO(woosuk): Support fine-grained seeds (e.g., seed per request).
parser.add_argument('--seed',
type=int,
default=EngineArgs.seed,
help='random seed')
parser.add_argument('--swap-space',
type=int,
default=EngineArgs.swap_space,
help='CPU swap space size (GiB) per GPU')
parser.add_argument(
'--gpu-memory-utilization',
type=float,
default=EngineArgs.gpu_memory_utilization,
help='the fraction of GPU memory to be used for '
'the model executor, which can range from 0 to 1.'
'If unspecified, will use the default value of 0.9.')
parser.add_argument('--max-num-batched-tokens',
type=int,
default=EngineArgs.max_num_batched_tokens,
help='maximum number of batched tokens per '
'iteration')
parser.add_argument('--max-num-seqs',
type=int,
default=EngineArgs.max_num_seqs,
help='maximum number of sequences per iteration')
parser.add_argument('--max-paddings',
type=int,
default=EngineArgs.max_paddings,
help='maximum number of paddings in a batch')
parser.add_argument('--disable-log-stats',
action='store_true',
help='disable logging statistics')
# Quantization settings.
parser.add_argument('--quantization',
'-q',
type=str,
choices=['awq', 'gptq', 'squeezellm', None],
default=None,
help='Method used to quantize the weights. If '
'None, we first check the `quantization_config` '
'attribute in the model config file. If that is '
'None, we assume the model weights are not '
'quantized and use `dtype` to determine the data '
'type of the weights.')
parser.add_argument('--enforce-eager',
action='store_true',
help='Always use eager-mode PyTorch. If False, '
'will use eager mode and CUDA graph in hybrid '
'for maximal performance and flexibility.')
parser.add_argument('--max-context-len-to-capture',
type=int,
default=EngineArgs.max_context_len_to_capture,
help='maximum context length covered by CUDA '
'graphs. When a sequence has context length '
'larger than this, we fall back to eager mode.')
parser.add_argument('--disable-custom-all-reduce',
action='store_true',
default=EngineArgs.disable_custom_all_reduce,
help='See ParallelConfig')
# LoRA related configs
parser.add_argument('--enable-lora',
action='store_true',
help='If True, enable handling of LoRA adapters.')
parser.add_argument('--max-loras',
type=int,
default=EngineArgs.max_loras,
help='Max number of LoRAs in a single batch.')
parser.add_argument('--max-lora-rank',
type=int,
default=EngineArgs.max_lora_rank,
help='Max LoRA rank.')
parser.add_argument(
'--lora-extra-vocab-size',
type=int,
default=EngineArgs.lora_extra_vocab_size,
help=('Maximum size of extra vocabulary that can be '
'present in a LoRA adapter (added to the base '
'model vocabulary).'))
parser.add_argument(
'--lora-dtype',
type=str,
default=EngineArgs.lora_dtype,
choices=['auto', 'float16', 'bfloat16', 'float32'],
help=('Data type for LoRA. If auto, will default to '
'base model dtype.'))
parser.add_argument(
'--max-cpu-loras',
type=int,
default=EngineArgs.max_cpu_loras,
help=('Maximum number of LoRAs to store in CPU memory. '
'Must be >= than max_num_seqs. '
'Defaults to max_num_seqs.'))
return parser
@classmethod
def from_cli_args(cls, args: argparse.Namespace) -> 'EngineArgs':
# Get the list of attributes of this dataclass.
attrs = [attr.name for attr in dataclasses.fields(cls)]
# Set the attributes from the parsed arguments.
engine_args = cls(**{attr: getattr(args, attr) for attr in attrs})
return engine_args
def create_engine_configs(
self,
) -> Tuple[ModelConfig, CacheConfig, ParallelConfig, SchedulerConfig,
Optional[LoRAConfig]]:
model_config = ModelConfig(self.model, self.tokenizer,
self.tokenizer_mode, self.trust_remote_code,
self.download_dir, self.load_format,
self.dtype, self.seed, self.revision,
self.tokenizer_revision, self.max_model_len,
self.quantization, self.enforce_eager,
self.max_context_len_to_capture)
cache_config = CacheConfig(self.block_size,
self.gpu_memory_utilization,
self.swap_space, self.kv_cache_dtype,
model_config.get_sliding_window())
parallel_config = ParallelConfig(self.pipeline_parallel_size,
self.tensor_parallel_size,
self.worker_use_ray,
self.max_parallel_loading_workers,
self.disable_custom_all_reduce)
scheduler_config = SchedulerConfig(self.max_num_batched_tokens,
self.max_num_seqs,
model_config.max_model_len,
self.max_paddings)
lora_config = LoRAConfig(
max_lora_rank=self.max_lora_rank,
max_loras=self.max_loras,
lora_extra_vocab_size=self.lora_extra_vocab_size,
lora_dtype=self.lora_dtype,
max_cpu_loras=self.max_cpu_loras if self.max_cpu_loras
and self.max_cpu_loras > 0 else None) if self.enable_lora else None
return model_config, cache_config, parallel_config, scheduler_config, lora_config
@dataclass
class AsyncEngineArgs(EngineArgs):
"""Arguments for asynchronous vLLM engine."""
engine_use_ray: bool = False
disable_log_requests: bool = False
max_log_len: Optional[int] = None
@staticmethod
def add_cli_args(
parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
parser = EngineArgs.add_cli_args(parser)
parser.add_argument('--engine-use-ray',
action='store_true',
help='use Ray to start the LLM engine in a '
'separate process as the server process.')
parser.add_argument('--disable-log-requests',
action='store_true',
help='disable logging requests')
parser.add_argument('--max-log-len',
type=int,
default=None,
help='max number of prompt characters or prompt '
'ID numbers being printed in log. '
'Default: unlimited.')
return parser