vllm/vllm/benchmarks/sweep/serve_sla.py
Cyrus Leung ecca3fee76
[Frontend] Add vllm bench sweep to CLI (#27639)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-29 05:59:48 -07:00

493 lines
14 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import contextlib
import json
import math
from dataclasses import asdict, dataclass
from datetime import datetime
from pathlib import Path
from typing import ClassVar, Literal, get_args
from typing_extensions import assert_never
from vllm.utils.import_utils import PlaceholderModule
from .param_sweep import ParameterSweep, ParameterSweepItem
from .serve import SweepServeArgs, run_benchmark, run_server
from .server import ServerProcess
from .sla_sweep import SLASweep, SLASweepItem
from .utils import sanitize_filename
try:
import pandas as pd
except ImportError:
pd = PlaceholderModule("pandas")
def _get_sla_base_path(
output_dir: Path,
serve_comb: ParameterSweepItem,
bench_comb: ParameterSweepItem,
):
parts = list[str]()
if serve_comb:
parts.extend(("SERVE-", serve_comb.as_text(sep="-")))
if bench_comb:
parts.extend(("BENCH-", bench_comb.as_text(sep="-")))
return output_dir / sanitize_filename("-".join(parts))
def _get_sla_iter_path(
base_path: Path,
sla_comb: SLASweepItem,
sla_variable: str,
sla_value: int | None,
):
if sla_value is None:
prefix = sla_comb.as_text(sep="-")
return base_path / f"SLA--{prefix}.json"
return base_path / f"{sla_variable}={sla_value}"
def _get_sla_run_path(iter_path: Path, run_number: int | None):
if run_number is None:
return iter_path / "summary.json"
return iter_path / f"run={run_number}.json"
def _sla_needs_server(
serve_comb: ParameterSweepItem,
bench_combs: ParameterSweep,
sla_combs: SLASweep,
sla_variable: str,
output_dir: Path,
):
for bench_comb in bench_combs:
base_path = _get_sla_base_path(output_dir, serve_comb, bench_comb)
for sla_comb in sla_combs:
if not _get_sla_iter_path(
base_path,
sla_comb,
sla_variable,
sla_value=None,
).exists():
return True
return False
def run_sla(
server: ServerProcess | None,
bench_cmd: list[str],
*,
serve_comb: ParameterSweepItem,
bench_comb: ParameterSweepItem,
iter_path: Path,
num_runs: int,
dry_run: bool,
):
iter_data = list[dict[str, object]]()
for run_number in range(num_runs):
run_data = run_benchmark(
server,
bench_cmd,
serve_overrides=serve_comb,
bench_overrides=bench_comb,
run_number=run_number,
output_path=_get_sla_run_path(iter_path, run_number),
dry_run=dry_run,
)
if run_data is not None:
iter_data.append(run_data)
if dry_run:
return None
with _get_sla_run_path(iter_path, run_number=None).open("w") as f:
json.dump(iter_data, f, indent=4)
return iter_data
SLAVariable = Literal["request_rate", "max_concurrency"]
def _estimate_sla_value(run_data: dict[str, object], sla_variable: SLAVariable):
request_throughput = float(run_data["request_throughput"]) # type: ignore
if sla_variable == "request_rate":
return request_throughput
if sla_variable == "max_concurrency":
mean_latency_ms = float(run_data["mean_e2el_ms"]) # type: ignore
return request_throughput * mean_latency_ms / 1000
assert_never(sla_variable)
def _estimate_sla_bounds(
server: ServerProcess | None,
bench_cmd: list[str],
*,
serve_comb: ParameterSweepItem,
bench_comb: ParameterSweepItem,
sla_comb: SLASweepItem,
base_path: Path,
num_runs: int,
dry_run: bool,
sla_variable: SLAVariable,
init_value: int,
max_value: int,
):
sla_data = list[dict[str, object]]()
max_passing: int = 0
min_failing: int = 0
val: int = init_value
assert val > 0
while True:
print(f"Testing {sla_variable}: {val} req/s")
iter_data = run_sla(
server,
bench_cmd,
serve_comb=serve_comb,
bench_comb=bench_comb | {sla_variable: val},
iter_path=_get_sla_iter_path(base_path, sla_comb, sla_variable, val),
num_runs=num_runs,
dry_run=dry_run,
)
assert iter_data is not None
sla_data.extend(iter_data)
iter_data_mean = {
k: sum(float(run_data[k]) for run_data in iter_data) / len(iter_data) # type: ignore
for k in sla_comb
}
sla_results = [
criterion.print_and_validate(iter_data_mean, k)
for k, criterion in sla_comb.items()
]
if all(sla_results):
print("SLA criteria are met.")
max_passing = val
val *= 2
else:
print("SLA criteria are not met.")
min_failing = val
break
if val >= max_value:
break
return sla_data, (max_passing, min_failing)
def _find_sla_value(
server: ServerProcess | None,
bench_cmd: list[str],
*,
serve_comb: ParameterSweepItem,
bench_comb: ParameterSweepItem,
sla_comb: SLASweepItem,
base_path: Path,
num_runs: int,
dry_run: bool,
sla_variable: SLAVariable,
min_value: int,
max_value: int,
):
sla_data = list[dict[str, object]]()
left: int = min_value
right: int = max_value
while True:
val = (left + right) // 2
print(f"Testing {sla_variable}: {val} req/s")
iter_data = run_sla(
server,
bench_cmd,
serve_comb=serve_comb,
bench_comb=bench_comb | {sla_variable: val},
iter_path=_get_sla_iter_path(base_path, sla_comb, sla_variable, val),
num_runs=num_runs,
dry_run=dry_run,
)
assert iter_data is not None
sla_data.extend(iter_data)
iter_data_mean = {
k: sum(float(run_data[k]) for run_data in iter_data) / len(iter_data) # type: ignore
for k in sla_comb
}
sla_results = [
criterion.print_and_validate(iter_data_mean, k)
for k, criterion in sla_comb.items()
]
if all(sla_results):
print("SLA criteria are met.")
left = val
else:
print("SLA criteria are not met.")
right = val
if right - left <= 1:
break
return sla_data, left
def search_sla(
server: ServerProcess | None,
bench_cmd: list[str],
*,
serve_comb: ParameterSweepItem,
bench_comb: ParameterSweepItem,
sla_comb: SLASweepItem,
sla_variable: SLAVariable,
sla_inf_value: int = 65536, # The value that represents infinite QPS
base_path: Path,
num_runs: int,
dry_run: bool,
):
print("[SLA START]")
print(f"SLA criteria: {sla_comb.as_text()}")
sla_data_0 = run_sla(
server,
bench_cmd,
serve_comb=serve_comb,
bench_comb=bench_comb | {sla_variable: sla_inf_value},
iter_path=_get_sla_iter_path(base_path, sla_comb, sla_variable, sla_inf_value),
num_runs=num_runs,
dry_run=dry_run,
)
if sla_data_0 is None:
assert dry_run
print("Omitting SLA search.")
print("[SLA END]")
return None
sla_init_value = math.ceil(
sum(_estimate_sla_value(item, sla_variable) for item in sla_data_0)
/ len(sla_data_0)
)
print(f"Initial {sla_variable} to search: {sla_init_value} req/s.")
sla_data_1, (sla_min, sla_max) = _estimate_sla_bounds(
server,
bench_cmd,
serve_comb=serve_comb,
bench_comb=bench_comb,
sla_comb=sla_comb,
base_path=base_path,
num_runs=num_runs,
dry_run=dry_run,
sla_variable=sla_variable,
init_value=sla_init_value,
max_value=sla_inf_value,
)
print(f"Range of {sla_variable} to search: [{sla_min}, {sla_max}] req/s.")
sla_data_2, sla_value = _find_sla_value(
server,
bench_cmd,
serve_comb=serve_comb,
bench_comb=bench_comb,
sla_comb=sla_comb,
base_path=base_path,
num_runs=num_runs,
dry_run=dry_run,
sla_variable=sla_variable,
min_value=sla_min,
max_value=sla_max,
)
sla_data = sla_data_0 + sla_data_1 + sla_data_2
print(f"Maximum {sla_variable} for SLA: {sla_value} req/s.")
with _get_sla_iter_path(
base_path,
sla_comb,
sla_variable,
sla_value=None,
).open("w") as f:
json.dump(sla_data, f, indent=4)
print("[SLA END]")
return sla_data
def run_slas(
serve_cmd: list[str],
bench_cmd: list[str],
after_bench_cmd: list[str],
*,
show_stdout: bool,
serve_params: ParameterSweep,
bench_params: ParameterSweep,
sla_params: SLASweep,
sla_variable: SLAVariable,
output_dir: Path,
num_runs: int,
dry_run: bool,
):
if any(bench_comb.has_param(sla_variable) for bench_comb in bench_params):
raise ValueError(
f"You should not override `{sla_variable}` in `bench_params` in SLA mode, "
"since it is supposed to be determined automatically."
)
all_data = list[dict[str, object]]()
for serve_comb in serve_params:
with (
run_server(
serve_cmd,
after_bench_cmd,
show_stdout=show_stdout,
serve_overrides=serve_comb,
dry_run=dry_run,
)
if _sla_needs_server(
serve_comb,
bench_params,
sla_params,
sla_variable,
output_dir,
)
else contextlib.nullcontext()
) as server:
for bench_comb in bench_params:
for sla_comb in sla_params:
base_path = _get_sla_base_path(output_dir, serve_comb, bench_comb)
comb_data = search_sla(
server,
bench_cmd,
serve_comb=serve_comb,
bench_comb=bench_comb,
sla_comb=sla_comb,
sla_variable=sla_variable,
base_path=base_path,
num_runs=num_runs,
dry_run=dry_run,
)
if comb_data is not None:
all_data.extend(comb_data)
if dry_run:
return None
combined_df = pd.DataFrame.from_records(all_data)
combined_df.to_csv(output_dir / "summary.csv")
return combined_df
@dataclass
class SweepServeSLAArgs(SweepServeArgs):
sla_params: SLASweep
sla_variable: SLAVariable
parser_name: ClassVar[str] = "serve_sla"
parser_help: ClassVar[str] = "Tune a variable to meet SLAs under multiple settings."
@classmethod
def from_cli_args(cls, args: argparse.Namespace):
# NOTE: Don't use super() as `from_cli_args` calls `cls()`
base_args = SweepServeArgs.from_cli_args(args)
if args.sla_params:
sla_params = SLASweep.read_json(args.sla_params)
else:
sla_params = SLASweep.from_records([])
return cls(
**asdict(base_args),
sla_params=sla_params,
sla_variable=args.sla_variable,
)
@classmethod
def add_cli_args(cls, parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
parser = super().add_cli_args(parser)
sla_group = parser.add_argument_group("sla options")
sla_group.add_argument(
"--sla-params",
type=str,
required=True,
help="Path to JSON file containing a list of SLA constraints to satisfy. "
'Each constraint is expressed in `{"<KEY>": "<OP><VALUE>"}` format, '
'e.g.: `{"p99_e2el_ms": "<=500"}` means that '
"the E2E latency should be less than 500ms 99%% of the time. "
"Setting this option runs this script in SLA mode, which searches for "
"the maximum `sla_variable` that satisfies the constraints for "
"each combination of `serve_params`, `bench_params`, and `sla_params`.",
)
sla_group.add_argument(
"--sla-variable",
type=str,
choices=get_args(SLAVariable),
default="request_rate",
help="Whether to tune request rate or maximum concurrency to satisfy "
"the SLA constraints.",
)
return parser
def run_main(args: SweepServeSLAArgs):
timestamp = args.resume or datetime.now().strftime("%Y%m%d_%H%M%S")
output_dir = args.output_dir / timestamp
if args.resume and not output_dir.exists():
raise ValueError(f"Cannot resume from non-existent directory ({output_dir})")
try:
return run_slas(
serve_cmd=args.serve_cmd,
bench_cmd=args.bench_cmd,
after_bench_cmd=args.after_bench_cmd,
show_stdout=args.show_stdout,
serve_params=args.serve_params,
bench_params=args.bench_params,
sla_params=args.sla_params,
sla_variable=args.sla_variable,
output_dir=output_dir,
num_runs=args.num_runs,
dry_run=args.dry_run,
)
except BaseException as exc:
raise RuntimeError(
f"The script was terminated early. Use `--resume {timestamp}` "
f"to continue the script from its last checkpoint."
) from exc
def main(args: argparse.Namespace):
run_main(SweepServeSLAArgs.from_cli_args(args))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description=SweepServeSLAArgs.parser_help)
SweepServeSLAArgs.add_cli_args(parser)
main(parser.parse_args())