Cyrus Leung 82de9b9d46
[Misc] Automatically resolve HF processor init kwargs (#22005)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-31 22:44:10 -07:00

246 lines
8.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from functools import lru_cache
from typing import TYPE_CHECKING, Any, Optional, Union, cast
from transformers import (AutoFeatureExtractor, AutoImageProcessor,
AutoProcessor)
from transformers.feature_extraction_utils import FeatureExtractionMixin
from transformers.image_processing_utils import BaseImageProcessor
from transformers.processing_utils import ProcessorMixin
from typing_extensions import TypeVar
from vllm.utils import get_allowed_kwarg_only_overrides
if TYPE_CHECKING:
from vllm.config import ModelConfig
_P = TypeVar("_P", bound=ProcessorMixin, default=ProcessorMixin)
class HashableDict(dict):
"""
A dictionary that can be hashed by lru_cache.
"""
# NOTE: pythonic dict is not hashable,
# we override on it directly for simplicity
def __hash__(self) -> int: # type: ignore[override]
return hash(frozenset(self.items()))
class HashableList(list):
"""
A list that can be hashed by lru_cache.
"""
def __hash__(self) -> int: # type: ignore[override]
return hash(tuple(self))
def _get_processor_factory_fn(processor_cls: Union[type, tuple[type, ...]]):
if isinstance(processor_cls, tuple) or processor_cls == ProcessorMixin:
return AutoProcessor.from_pretrained
if hasattr(processor_cls, "from_pretrained"):
return processor_cls.from_pretrained
return processor_cls
def _merge_mm_kwargs(
model_config: "ModelConfig",
processor_cls: Union[type, tuple[type, ...]],
/,
**kwargs,
):
mm_config = model_config.get_multimodal_config()
merged_kwargs = mm_config.merge_mm_processor_kwargs(kwargs)
factory = _get_processor_factory_fn(processor_cls)
allowed_kwargs = get_allowed_kwarg_only_overrides(
factory,
merged_kwargs,
requires_kw_only=False,
allow_var_kwargs=True,
)
# NOTE: Pythonic dict is not hashable and will raise unhashable type
# error when calling `cached_get_processor`, therefore we need to
# wrap it to a hashable dict.
for key, value in allowed_kwargs.items():
if isinstance(value, dict):
allowed_kwargs[key] = HashableDict(value)
if isinstance(value, list):
allowed_kwargs[key] = HashableList(value)
return allowed_kwargs
def get_processor(
processor_name: str,
*args: Any,
revision: Optional[str] = None,
trust_remote_code: bool = False,
processor_cls: Union[type[_P], tuple[type[_P], ...]] = ProcessorMixin,
**kwargs: Any,
) -> _P:
"""Load a processor for the given model name via HuggingFace."""
if revision is None:
revision = "main"
try:
if isinstance(processor_cls, tuple) or processor_cls == ProcessorMixin:
processor = AutoProcessor.from_pretrained(
processor_name,
*args,
revision=revision,
trust_remote_code=trust_remote_code,
**kwargs,
)
elif issubclass(processor_cls, ProcessorMixin):
processor = processor_cls.from_pretrained(
processor_name,
*args,
revision=revision,
trust_remote_code=trust_remote_code,
**kwargs,
)
else:
# Processors that are standalone classes unrelated to HF
processor = processor_cls(*args, **kwargs)
except ValueError as e:
# If the error pertains to the processor class not existing or not
# currently being imported, suggest using the --trust-remote-code flag.
# Unlike AutoTokenizer, AutoProcessor does not separate such errors
if not trust_remote_code:
err_msg = (
"Failed to load the processor. If the processor is "
"a custom processor not yet available in the HuggingFace "
"transformers library, consider setting "
"`trust_remote_code=True` in LLM or using the "
"`--trust-remote-code` flag in the CLI.")
raise RuntimeError(err_msg) from e
else:
raise e
if not isinstance(processor, processor_cls):
raise TypeError("Invalid type of HuggingFace processor. "
f"Expected type: {processor_cls}, but "
f"found type: {type(processor)}")
return processor
cached_get_processor = lru_cache(get_processor)
def cached_processor_from_config(
model_config: "ModelConfig",
processor_cls: Union[type[_P], tuple[type[_P], ...]] = ProcessorMixin,
**kwargs: Any,
) -> _P:
return cached_get_processor(
model_config.model,
revision=model_config.revision,
trust_remote_code=model_config.trust_remote_code,
processor_cls=processor_cls, # type: ignore[arg-type]
**_merge_mm_kwargs(model_config, processor_cls, **kwargs),
)
def get_feature_extractor(
processor_name: str,
*args: Any,
revision: Optional[str] = None,
trust_remote_code: bool = False,
**kwargs: Any,
):
"""Load an audio feature extractor for the given model name
via HuggingFace."""
try:
feature_extractor = AutoFeatureExtractor.from_pretrained(
processor_name,
*args,
revision=revision,
trust_remote_code=trust_remote_code,
**kwargs)
except ValueError as e:
# If the error pertains to the processor class not existing or not
# currently being imported, suggest using the --trust-remote-code flag.
# Unlike AutoTokenizer, AutoImageProcessor does not separate such errors
if not trust_remote_code:
err_msg = (
"Failed to load the feature extractor. If the feature "
"extractor is a custom extractor not yet available in the "
"HuggingFace transformers library, consider setting "
"`trust_remote_code=True` in LLM or using the "
"`--trust-remote-code` flag in the CLI.")
raise RuntimeError(err_msg) from e
else:
raise e
return cast(FeatureExtractionMixin, feature_extractor)
cached_get_feature_extractor = lru_cache(get_feature_extractor)
def cached_feature_extractor_from_config(
model_config: "ModelConfig",
**kwargs: Any,
):
return cached_get_feature_extractor(
model_config.model,
revision=model_config.revision,
trust_remote_code=model_config.trust_remote_code,
**_merge_mm_kwargs(model_config, AutoFeatureExtractor, **kwargs),
)
def get_image_processor(
processor_name: str,
*args: Any,
revision: Optional[str] = None,
trust_remote_code: bool = False,
**kwargs: Any,
):
"""Load an image processor for the given model name via HuggingFace."""
try:
processor = AutoImageProcessor.from_pretrained(
processor_name,
*args,
revision=revision,
trust_remote_code=trust_remote_code,
**kwargs)
except ValueError as e:
# If the error pertains to the processor class not existing or not
# currently being imported, suggest using the --trust-remote-code flag.
# Unlike AutoTokenizer, AutoImageProcessor does not separate such errors
if not trust_remote_code:
err_msg = (
"Failed to load the image processor. If the image processor is "
"a custom processor not yet available in the HuggingFace "
"transformers library, consider setting "
"`trust_remote_code=True` in LLM or using the "
"`--trust-remote-code` flag in the CLI.")
raise RuntimeError(err_msg) from e
else:
raise e
return cast(BaseImageProcessor, processor)
cached_get_image_processor = lru_cache(get_image_processor)
def cached_image_processor_from_config(
model_config: "ModelConfig",
**kwargs: Any,
):
return cached_get_image_processor(
model_config.model,
revision=model_config.revision,
trust_remote_code=model_config.trust_remote_code,
**_merge_mm_kwargs(model_config, AutoImageProcessor, **kwargs),
)