vllm/csrc/moe/permute_unpermute_kernels/moe_permute_unpermute_kernel.h
Caleb_Du 3e887d2e0c
permute/unpermute kernel for moe optimization (#14568)
Signed-off-by: Caleb_Du <Caleb_Du@zju.edu.cn>
2025-05-02 11:31:55 -07:00

96 lines
3.7 KiB
C++

#pragma once
// reference from tensorrt_llm moe kernel implementation archive in
// https://github.com/BBuf/tensorrt-llm-moe/tree/master
#include <c10/core/ScalarType.h>
#include <torch/all.h>
#include "dispatch.h"
#include <cub/cub.cuh>
#include <cub/device/device_radix_sort.cuh>
#include <cub/util_type.cuh>
#include "cutlass/numeric_size.h"
#include "cutlass/array.h"
template <typename T>
inline T* get_ptr(torch::Tensor& t) {
return reinterpret_cast<T*>(t.data_ptr());
}
template <typename T>
inline const T* get_ptr(const torch::Tensor& t) {
return reinterpret_cast<const T*>(t.data_ptr());
}
class CubKeyValueSorter {
public:
CubKeyValueSorter();
CubKeyValueSorter(int const num_experts);
void updateNumExperts(int const num_experts);
static size_t getWorkspaceSize(size_t const num_key_value_pairs,
int const num_experts);
void run(void* workspace, size_t const workspace_size, int const* keys_in,
int* keys_out, int const* values_in, int* values_out,
size_t const num_key_value_pairs, cudaStream_t stream);
private:
static int expertsToBits(int experts);
int num_experts_;
int num_bits_;
};
void computeExpertFirstTokenOffset(int const* sorted_indices,
int const total_indices,
int const num_experts,
int64_t* expert_first_token_offset,
cudaStream_t stream);
void sortAndScanExpert(int* expert_for_source_row, const int* source_rows,
int* permuted_experts, int* permuted_rows,
int64_t* expert_first_token_offset, int num_rows,
int num_experts, int num_experts_per_node, int k,
CubKeyValueSorter& sorter, void* sorter_ws,
cudaStream_t stream);
template <typename T>
void expandInputRowsKernelLauncher(
T const* unpermuted_input, T* permuted_output,
const float* unpermuted_scales, int* sorted_experts,
int const* expanded_dest_row_to_expanded_source_row,
int* expanded_source_row_to_expanded_dest_row,
int64_t* expert_first_token_offset, int64_t const num_rows,
int64_t const* num_valid_tokens_ptr, int64_t const cols, int const k,
int num_local_experts, const int& align_block_size, cudaStream_t stream);
// Final kernel to unpermute and scale
// This kernel unpermutes the original data, does the k-way reduction and
// performs the final skip connection.
template <typename T, typename OutputType, bool CHECK_SKIPPED>
__global__ void finalizeMoeRoutingKernel(
T const* expanded_permuted_rows, OutputType* reduced_unpermuted_output,
float const* scales, int const* expanded_source_row_to_expanded_dest_row,
int const* expert_for_source_row, int64_t const orig_cols, int64_t const k,
int64_t const* num_valid_ptr);
template <class T, class OutputType>
void finalizeMoeRoutingKernelLauncher(
T const* expanded_permuted_rows, OutputType* reduced_unpermuted_output,
float const* scales, int const* expanded_source_row_to_expanded_dest_row,
int const* expert_for_source_row, int64_t const num_rows,
int64_t const cols, int64_t const k, int64_t const* num_valid_ptr,
cudaStream_t stream);
void preprocessTopkIdLauncher(int* topk_id_ptr, int size,
const int* expert_map_ptr, int num_experts,
cudaStream_t stream);
void getMIndices(int64_t* expert_first_token_offset,
int64_t* align_expert_first_token_offset, int* m_indices,
int num_local_expert, const int align_block_size,
cudaStream_t stream);
#include "moe_permute_unpermute_kernel.inl"