vllm/csrc/moe/permute_unpermute_kernels/moe_permute_unpermute_kernel.inl
Wentao Ye ce9dc02c93
[Refactor] Remove unused variables in moe_permute_unpermute_kernel.inl (#19573)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-06-13 06:12:15 -07:00

207 lines
8.5 KiB
C++

#pragma once
template <typename T, bool CHECK_SKIPPED, bool ALIGN_BLOCK_SIZE>
__global__ void expandInputRowsKernel(
T const* unpermuted_input, T* permuted_output,
const float* unpermuted_scales, int* sorted_experts,
int const* expanded_dest_row_to_expanded_source_row,
int* expanded_source_row_to_expanded_dest_row,
int64_t* expert_first_token_offset, int64_t const num_rows,
int64_t const* num_dest_rows, int64_t const cols, int64_t k,
int num_local_experts, int align_block_size) {
// Reverse permutation map.
// I do this so that later, we can use the source -> dest map to do the k-way
// reduction and unpermuting. I need the reverse map for that reduction to
// allow each threadblock to do 1 k-way reduce without atomics later in MoE. 1
// thread block will be responsible for all k summations.
int64_t expanded_dest_row = blockIdx.x;
int64_t const expanded_source_row =
expanded_dest_row_to_expanded_source_row[expanded_dest_row];
int expert_id = sorted_experts[expanded_dest_row];
extern __shared__ int64_t smem_expert_first_token_offset[];
if constexpr (ALIGN_BLOCK_SIZE) {
// load g2s
for (int idx = threadIdx.x; idx < num_local_experts + 1;
idx += blockDim.x) {
smem_expert_first_token_offset[idx] =
__ldg(expert_first_token_offset + idx);
}
__syncthreads();
int lane_idx = threadIdx.x & 31;
if (lane_idx == 0) {
// set token_offset_in_expert = 0 if this expert is not local expert
int token_offset_in_expert =
expert_id >= num_local_experts
? 0
: expanded_dest_row - smem_expert_first_token_offset[expert_id];
int64_t accumulate_align_offset = 0;
#pragma unroll 1
for (int eidx = 1; eidx <= min(expert_id, num_local_experts); eidx++) {
auto n_token_in_expert = smem_expert_first_token_offset[eidx] -
smem_expert_first_token_offset[eidx - 1];
accumulate_align_offset += (n_token_in_expert + align_block_size - 1) /
align_block_size * align_block_size;
}
expanded_dest_row = accumulate_align_offset + token_offset_in_expert;
}
// lane0 shuffle broadcast align_expanded_dest_row
expanded_dest_row = __shfl_sync(0xffffffff, expanded_dest_row, 0);
}
if (threadIdx.x == 0) {
assert(expanded_dest_row <= INT32_MAX);
expanded_source_row_to_expanded_dest_row[expanded_source_row] =
static_cast<int>(expanded_dest_row);
}
if (!CHECK_SKIPPED || blockIdx.x < *num_dest_rows) {
// Load 128-bits per thread
constexpr int64_t ELEM_PER_THREAD = 128 / cutlass::sizeof_bits<T>::value;
using DataElem = cutlass::Array<T, ELEM_PER_THREAD>;
// Duplicate and permute rows
int64_t const source_row = expanded_source_row % num_rows;
auto const* source_row_ptr =
reinterpret_cast<DataElem const*>(unpermuted_input + source_row * cols);
auto* dest_row_ptr =
reinterpret_cast<DataElem*>(permuted_output + expanded_dest_row * cols);
int64_t const start_offset = threadIdx.x;
int64_t const stride = blockDim.x;
int64_t const num_elems_in_col = cols / ELEM_PER_THREAD;
for (int elem_index = start_offset; elem_index < num_elems_in_col;
elem_index += stride) {
dest_row_ptr[elem_index] = source_row_ptr[elem_index];
}
}
}
template <typename T>
void expandInputRowsKernelLauncher(
T const* unpermuted_input, T* permuted_output,
const float* unpermuted_scales, int* sorted_experts,
int const* expanded_dest_row_to_expanded_source_row,
int* expanded_source_row_to_expanded_dest_row,
int64_t* expert_first_token_offset, int64_t const num_rows,
int64_t const* num_valid_tokens_ptr, int64_t const cols, int const k,
int num_local_experts, const int& align_block_size, cudaStream_t stream) {
int64_t const blocks = num_rows * k;
int64_t const threads = 256;
using FuncPtr = decltype(&expandInputRowsKernel<T, true, true>);
FuncPtr func_map[2][2] = {
{&expandInputRowsKernel<T, false, false>,
&expandInputRowsKernel<T, false, true>},
{&expandInputRowsKernel<T, true, false>,
&expandInputRowsKernel<T, true, true>},
};
bool is_check_skip = num_valid_tokens_ptr != nullptr;
bool is_align_block_size = align_block_size != -1;
auto func = func_map[is_check_skip][is_align_block_size];
int64_t smem_size = sizeof(int64_t) * (num_local_experts + 1);
func<<<blocks, threads, smem_size, stream>>>(
unpermuted_input, permuted_output, unpermuted_scales, sorted_experts,
expanded_dest_row_to_expanded_source_row,
expanded_source_row_to_expanded_dest_row, expert_first_token_offset,
num_rows, num_valid_tokens_ptr, cols, k, num_local_experts,
align_block_size);
}
template <class T, class U>
__host__ __device__ constexpr static U arrayConvert(T const& input) {
using Type = typename U::Element;
static_assert(T::kElements == U::kElements);
U u;
#pragma unroll
for (int i = 0; i < U::kElements; i++) {
u[i] = static_cast<Type>(input[i]);
}
return u;
}
template <typename T, typename OutputType, bool CHECK_SKIPPED>
__global__ void finalizeMoeRoutingKernel(
T const* expanded_permuted_rows, OutputType* reduced_unpermuted_output,
float const* scales, int const* expanded_source_row_to_expanded_dest_row,
int const* expert_for_source_row, int64_t const orig_cols, int64_t const k,
int64_t const* num_valid_ptr) {
assert(orig_cols % 4 == 0);
int64_t const original_row = blockIdx.x;
int64_t const num_rows = gridDim.x;
auto const offset = original_row * orig_cols;
OutputType* reduced_row_ptr = reduced_unpermuted_output + offset;
int64_t const num_valid = *num_valid_ptr;
// Load 128-bits per thread, according to the smallest data type we read/write
constexpr int64_t FINALIZE_ELEM_PER_THREAD =
128 / std::min(cutlass::sizeof_bits<OutputType>::value,
cutlass::sizeof_bits<T>::value);
int64_t const start_offset = threadIdx.x;
int64_t const stride = blockDim.x;
int64_t const num_elems_in_col = orig_cols / FINALIZE_ELEM_PER_THREAD;
using InputElem = cutlass::Array<T, FINALIZE_ELEM_PER_THREAD>;
using OutputElem = cutlass::Array<OutputType, FINALIZE_ELEM_PER_THREAD>;
using ComputeElem = cutlass::Array<float, FINALIZE_ELEM_PER_THREAD>;
auto const* expanded_permuted_rows_v =
reinterpret_cast<InputElem const*>(expanded_permuted_rows);
auto* reduced_row_ptr_v = reinterpret_cast<OutputElem*>(reduced_row_ptr);
#pragma unroll
for (int elem_index = start_offset; elem_index < num_elems_in_col;
elem_index += stride) {
ComputeElem thread_output;
thread_output.fill(0);
for (int k_idx = 0; k_idx < k; ++k_idx) {
int64_t const expanded_original_row = original_row + k_idx * num_rows;
int64_t const expanded_permuted_row =
expanded_source_row_to_expanded_dest_row[expanded_original_row];
int64_t const k_offset = original_row * k + k_idx;
float const row_scale = scales[k_offset];
// Check after row_rescale has accumulated
if (CHECK_SKIPPED && expanded_permuted_row >= num_valid) {
continue;
}
auto const* expanded_permuted_rows_row_ptr =
expanded_permuted_rows_v + expanded_permuted_row * num_elems_in_col;
ComputeElem expert_result = arrayConvert<InputElem, ComputeElem>(
expanded_permuted_rows_row_ptr[elem_index]);
thread_output = thread_output + row_scale * (expert_result);
}
OutputElem output_elem =
arrayConvert<ComputeElem, OutputElem>(thread_output);
reduced_row_ptr_v[elem_index] = output_elem;
}
}
template <class T, class OutputType>
void finalizeMoeRoutingKernelLauncher(
T const* expanded_permuted_rows, OutputType* reduced_unpermuted_output,
float const* scales, int const* expanded_source_row_to_expanded_dest_row,
int const* expert_for_source_row, int64_t const num_rows,
int64_t const cols, int64_t const k, int64_t const* num_valid_ptr,
cudaStream_t stream) {
int64_t const blocks = num_rows;
int64_t const threads = 256;
bool const check_finished = num_valid_ptr != nullptr;
using FuncPtr = decltype(&finalizeMoeRoutingKernel<T, OutputType, false>);
FuncPtr func_map[2] = {&finalizeMoeRoutingKernel<T, OutputType, false>,
&finalizeMoeRoutingKernel<T, OutputType, true>};
auto* const kernel = func_map[check_finished];
kernel<<<blocks, threads, 0, stream>>>(
expanded_permuted_rows, reduced_unpermuted_output, scales,
expanded_source_row_to_expanded_dest_row, expert_for_source_row, cols, k,
num_valid_ptr);
}