vllm/tests/compile/test_dynamic_shapes_compilation.py
2025-11-24 10:12:41 -05:00

89 lines
2.9 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import gc
import pytest
import torch
from vllm import LLM, SamplingParams
from vllm.config.compilation import CompilationMode, DynamicShapesType
from vllm.transformers_utils.tokenizer import get_tokenizer
from vllm.utils.torch_utils import is_torch_equal_or_newer
def get_test_models():
"""Get list of models to test based on PyTorch version"""
# TODO "Qwen/Qwen3-4B-Instruct-2507" fails Fix issue and support it.
return ["gpt2", "Qwen/Qwen2-7B-Instruct", "meta-llama/Llama-3.1-8B"]
@pytest.mark.parametrize("model_name", get_test_models())
@pytest.mark.parametrize(
"shapes_type",
[
DynamicShapesType.BACKED,
DynamicShapesType.UNBACKED,
DynamicShapesType.BACKED_SIZE_OBLIVIOUS,
],
)
@pytest.mark.parametrize("use_aot_compile", ["0"])
@pytest.mark.parametrize("use_bytecode_hook", [True, False])
@pytest.mark.skipif(
not is_torch_equal_or_newer("2.10.0.dev"), reason="requires torch 2.10"
)
def test_dynamic_shapes_compilation(
monkeypatch, model_name, shapes_type, use_aot_compile, use_bytecode_hook
):
"""Test that all dynamic shapes types compile successfully"""
print(
f"\nTesting model: {model_name} with {shapes_type.name}, "
f"AOT compile: {use_aot_compile}, "
f"Bytecode hook: {use_bytecode_hook}"
)
if use_bytecode_hook and shapes_type == DynamicShapesType.UNBACKED:
pytest.skip("UNBACKED dynamic shapes require VLLM_USE_BYTECODE_HOOK=0")
monkeypatch.setenv("VLLM_USE_AOT_COMPILE", use_aot_compile)
monkeypatch.setenv("VLLM_USE_BYTECODE_HOOK", "1" if use_bytecode_hook else "0")
prompt = "Hello, my name is"
print(f"Testing {shapes_type.name} dynamic shapes...")
# Initialize the model with specific dynamic shapes configuration
model = LLM(
model=model_name,
compilation_config={
"mode": CompilationMode.VLLM_COMPILE,
"dynamic_shapes_config": {
"type": shapes_type.value,
},
},
)
output = model.generate(prompt)
result = output[0].outputs[0].text
# Example of setting the sampling parameters
tokenizer = get_tokenizer(model_name)
yes_tokens = tokenizer.encode("yes", add_special_tokens=False)
no_tokens = tokenizer.encode("no", add_special_tokens=False)
allowed_ids = list(set(yes_tokens + no_tokens))
sampling_params = SamplingParams(
max_tokens=1, temperature=0, allowed_token_ids=allowed_ids
)
output = model.generate(
"answer with yes or no is " + result + " rubbish for prompt " + prompt + "?",
sampling_params=sampling_params,
)
result = output[0].outputs[0].text
assert result == "yes"
# Clean up GPU memory
del model
gc.collect()
torch.cuda.empty_cache()
torch.cuda.synchronize()
print("GPU memory cleared")