vllm/vllm/model_executor/models/llama_eagle.py
zhiweiz 9e0726e5bf
[Meta] Official Eagle mm support, first enablement on llama4 (#20788)
Signed-off-by: morgendave <morgendave@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.me>
2025-07-31 10:35:07 -07:00

172 lines
6.0 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Iterable
from typing import Optional
import torch
import torch.nn as nn
from transformers import LlamaConfig
from vllm.compilation.decorators import support_torch_compile
from vllm.config import VllmConfig
from vllm.distributed.parallel_state import get_pp_group
from vllm.logger import init_logger
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.llama import (LlamaDecoderLayer,
LlamaForCausalLM)
from .utils import AutoWeightsLoader, maybe_prefix
logger = init_logger(__name__)
class LlamaDecoderLayer(LlamaDecoderLayer):
def __init__(
self,
config: LlamaConfig,
disable_input_layernorm: bool,
prefix: str = "",
) -> None:
super().__init__(config, prefix=prefix)
# Skip the input_layernorm
# https://github.com/SafeAILab/EAGLE/blob/35c78f6cdc19a73e05cf5c330b4c358dad970c6a/eagle/model/cnets.py#L427
if disable_input_layernorm:
del self.input_layernorm
self.input_layernorm = nn.Identity()
@support_torch_compile
class LlamaModel(nn.Module):
def __init__(
self,
*,
vllm_config: VllmConfig,
prefix: str = "",
start_layer_id: int = 0,
) -> None:
super().__init__()
self.config = vllm_config. \
speculative_config.draft_model_config.hf_config
self.vocab_size = self.config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
self.config.vocab_size,
self.config.hidden_size,
prefix=maybe_prefix(prefix, "embed_tokens"),
)
self.layers = nn.ModuleList([
LlamaDecoderLayer(
self.config,
i == 0,
prefix=maybe_prefix(prefix, f"layers.{i + start_layer_id}"),
) for i in range(self.config.num_hidden_layers)
])
self.fc = torch.nn.Linear(self.config.hidden_size * 2,
self.config.hidden_size,
bias=False)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
input_embeds = self.embed_tokens(input_ids)
hidden_states = self.fc(
torch.cat((input_embeds, hidden_states), dim=-1))
residual = None
for layer in self.layers:
hidden_states, residual = layer(
positions,
hidden_states,
residual,
)
hidden_states = hidden_states + residual
return hidden_states, hidden_states
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
(".gate_up_proj", ".gate_proj", 0),
(".gate_up_proj", ".up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# if PP disabled then draft will share embed with target
if get_pp_group().world_size == 1 and \
"embed_tokens." in name:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class EagleLlamaForCausalLM(LlamaForCausalLM):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
nn.Module.__init__(self)
self.config = vllm_config. \
speculative_config.draft_model_config.hf_config
target_layer_num = vllm_config.model_config.get_num_layers(
vllm_config.parallel_config)
self.model = LlamaModel(vllm_config=vllm_config,
prefix="model",
start_layer_id=target_layer_num)
logit_scale = getattr(self.config, "logit_scale", 1.0)
self.logits_processor = LogitsProcessor(self.config.vocab_size,
scale=logit_scale)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
hidden_states: torch.Tensor,
inputs_embeds: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
if inputs_embeds is not None:
raise NotImplementedError(
f"{type(self).__name__} does not support multimodal inputs yet."
)
return self.model(input_ids, positions, hidden_states)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
loader = AutoWeightsLoader(
self,
skip_prefixes=None,
)
model_weights = {}
for name, loaded_weight in weights:
if "lm_head" not in name:
name = "model." + name
model_weights[name] = loaded_weight
loader.load_weights(model_weights.items())