vllm/vllm/v1/worker/block_table.py
2025-03-02 17:34:51 -08:00

88 lines
2.7 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import numpy as np
import torch
from vllm.logger import init_logger
logger = init_logger(__name__)
class BlockTable:
def __init__(
self,
max_num_reqs: int,
max_num_blocks_per_req: int,
pin_memory: bool,
device: torch.device,
):
self.max_num_reqs = max_num_reqs
self.max_num_blocks_per_req = max_num_blocks_per_req
self.pin_memory = pin_memory
self.device = device
self.block_table = torch.zeros(
(max_num_reqs, max_num_blocks_per_req),
device=self.device,
dtype=torch.int32,
)
self.block_table_cpu = torch.zeros(
(max_num_reqs, max_num_blocks_per_req),
device="cpu",
dtype=torch.int32,
pin_memory=pin_memory,
)
self.block_table_np = self.block_table_cpu.numpy()
self.num_blocks_per_row = np.zeros(max_num_reqs, dtype=np.int32)
def append_row(
self,
block_ids: list[int],
row_idx: int,
) -> None:
if not block_ids:
return
num_blocks = len(block_ids)
start = self.num_blocks_per_row[row_idx]
self.num_blocks_per_row[row_idx] += num_blocks
self.block_table_np[row_idx, start:start + num_blocks] = block_ids
def add_row(self, block_ids: list[int], row_idx: int) -> None:
self.num_blocks_per_row[row_idx] = 0
self.append_row(block_ids, row_idx)
def move_row(self, src: int, tgt: int) -> None:
num_blocks = self.num_blocks_per_row[src]
self.block_table_np[tgt, :num_blocks] = self.block_table_np[
src, :num_blocks]
self.num_blocks_per_row[tgt] = num_blocks
def swap_row(self, src: int, tgt: int) -> None:
num_blocks_src = self.num_blocks_per_row[src]
num_blocks_tgt = self.num_blocks_per_row[tgt]
self.num_blocks_per_row[src] = num_blocks_tgt
self.num_blocks_per_row[tgt] = num_blocks_src
self.block_table_np[[src, tgt]] = self.block_table_np[[tgt, src]]
def commit(self, num_reqs: int) -> None:
self.block_table[:num_reqs].copy_(self.block_table_cpu[:num_reqs],
non_blocking=True)
def clear(self) -> None:
self.block_table.fill_(0)
self.block_table_cpu.fill_(0)
def get_device_tensor(self) -> torch.Tensor:
"""Ruturns the device tensor of the block table."""
return self.block_table
def get_cpu_tensor(self) -> torch.Tensor:
"""Returns the CPU tensor of the block table."""
return self.block_table_cpu
def get_numpy_array(self) -> np.ndarray:
"""Returns the numpy array of the block table."""
return self.block_table_np