vllm/vllm/compilation/fusion.py
Luka Govedič bd7157a071
[torch.compile] Enable attention and allreduce fusion without custom ops enabled (#24604)
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-10-17 08:10:23 -06:00

371 lines
12 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Any, NamedTuple
import torch
import torch._inductor.pattern_matcher as pm
from torch import fx
from torch._higher_order_ops.auto_functionalize import auto_functionalized
from torch._inductor.pattern_matcher import PatternMatcherPass
from torch._ops import OpOverload
from vllm.config import VllmConfig, get_current_vllm_config
from vllm.logger import init_logger
from vllm.model_executor.layers.quantization.utils.quant_utils import (
GroupShape,
QuantKey,
ScaleDesc,
kFp8DynamicTensorSym,
kFp8DynamicTokenSym,
kFp8StaticTensorSym,
kNvfp4Quant,
kStaticTensorScale,
)
from vllm.platforms import current_platform
from .inductor_pass import enable_fake_mode
from .matcher_utils import MatcherFusedAddRMSNorm, MatcherQuantFP8, MatcherRMSNorm
from .vllm_inductor_pass import VllmInductorPass, VllmPatternMatcherPass
logger = init_logger(__name__)
FP8_DTYPE = current_platform.fp8_dtype()
FP4_DTYPE = torch.uint8
def empty_bf16(*args, **kwargs):
return torch.empty(*args, **kwargs, dtype=torch.bfloat16, device="cuda")
def empty_fp32(*args, **kwargs):
return torch.empty(*args, **kwargs, dtype=torch.float32, device="cuda")
def empty_i32(*args, **kwargs):
return torch.empty(*args, **kwargs, dtype=torch.int32, device="cuda")
RMS_OP = torch.ops._C.rms_norm.default
RMS_ADD_OP = torch.ops._C.fused_add_rms_norm.default
QUANT_OPS: dict[QuantKey, OpOverload] = {
kFp8StaticTensorSym: torch.ops._C.static_scaled_fp8_quant.default, # noqa: E501
kFp8DynamicTensorSym: torch.ops._C.dynamic_scaled_fp8_quant.default, # noqa: E501
kFp8DynamicTokenSym: torch.ops._C.dynamic_per_token_scaled_fp8_quant.default, # noqa: E501
}
if current_platform.is_cuda() and hasattr(torch.ops._C, "scaled_fp4_quant"):
QUANT_OPS[kNvfp4Quant] = torch.ops._C.scaled_fp4_quant.default
class FusedRMSQuantKey(NamedTuple):
"""
Named tuple for identifying the type of RMSNorm + quant fusion.
quant: type of quantization
fused_add: does the op also perform the residual add
"""
quant: QuantKey
fused_add: bool
def __str__(self):
return (
f"FusedQuantKey({self.quant}, with"
f"{'' if self.fused_add else 'out'} residual)"
)
FUSED_OPS: dict[FusedRMSQuantKey, OpOverload] = {
FusedRMSQuantKey(
kFp8StaticTensorSym, False
): torch.ops._C.rms_norm_static_fp8_quant.default, # noqa: E501
FusedRMSQuantKey(
kFp8StaticTensorSym, True
): torch.ops._C.fused_add_rms_norm_static_fp8_quant.default, # noqa: E501
FusedRMSQuantKey(
kFp8DynamicTokenSym, False
): torch.ops._C.rms_norm_dynamic_per_token_quant.default, # noqa: E501
FusedRMSQuantKey(
kFp8DynamicTokenSym, True
): torch.ops._C.rms_norm_dynamic_per_token_quant.default, # noqa: E501
}
class RMSNormQuantPattern:
def __init__(self, epsilon: float, key: FusedRMSQuantKey):
self.epsilon = epsilon
self.quant_dtype = key.quant.dtype
config = get_current_vllm_config()
self.model_dtype = config.model_config.dtype if config.model_config else None
assert key in FUSED_OPS, f"unsupported fused rmsnorm+quant op for {key}"
self.FUSED_OP = FUSED_OPS[key]
self.rmsnorm_matcher = (
MatcherRMSNorm(epsilon)
if not key.fused_add
else MatcherFusedAddRMSNorm(epsilon)
)
self.quant_matcher = MatcherQuantFP8(key.quant)
class RMSNormStaticQuantPattern(RMSNormQuantPattern):
def __init__(self, epsilon: float, quant_dtype: torch.dtype, symmetric=True):
fused_key = FusedRMSQuantKey(
fused_add=False,
quant=QuantKey(
dtype=quant_dtype, scale=kStaticTensorScale, symmetric=symmetric
),
)
super().__init__(epsilon, fused_key)
def register(self, pm_pass: PatternMatcherPass):
# Cannot use methods, as the self argument affects tracing
def pattern(input: torch.Tensor, weight: torch.Tensor, scale: torch.Tensor):
result_rms = self.rmsnorm_matcher(input, weight)
return self.quant_matcher(result_rms, scale)[0]
def replacement(input: torch.Tensor, weight: torch.Tensor, scale: torch.Tensor):
# In case we're matching native rms-norm, conversions might be
# optimized out. We convert here just to be safe.
input = input.to(dtype=self.model_dtype)
result = torch.empty(
input.shape, device=input.device, dtype=self.quant_dtype
)
at = auto_functionalized(
self.FUSED_OP,
result=result,
input=input,
weight=weight,
scale=scale,
epsilon=self.epsilon,
)
# result
return at[1]
inputs = [
# input, weight
*self.rmsnorm_matcher.inputs(),
self.quant_matcher.inputs()[1], # scale
]
pattern(*inputs)
pm.register_replacement(pattern, replacement, inputs, pm.fwd_only, pm_pass)
class FusedAddRMSNormStaticQuantPattern(RMSNormQuantPattern):
def __init__(self, epsilon: float, quant_dtype: torch.dtype, symmetric=True):
key = FusedRMSQuantKey(
fused_add=True,
quant=QuantKey(
dtype=quant_dtype, scale=kStaticTensorScale, symmetric=symmetric
),
)
super().__init__(epsilon, key)
def register(self, pm_pass: PatternMatcherPass):
def pattern(
input: torch.Tensor,
weight: torch.Tensor,
residual: torch.Tensor,
scale: torch.Tensor,
):
result_rms, residual = self.rmsnorm_matcher(input, weight, residual)
result, _ = self.quant_matcher(result_rms, scale)
return result, residual
def replacement(
input: torch.Tensor,
weight: torch.Tensor,
residual: torch.Tensor,
scale: torch.Tensor,
):
# In case we're matching native rms-norm, conversions might be
# optimized out. We convert here just to be safe.
input = input.to(dtype=self.model_dtype)
result = torch.empty_like(input, dtype=self.quant_dtype)
at = auto_functionalized(
self.FUSED_OP,
result=result,
input=input,
residual=residual,
weight=weight,
scale=scale,
epsilon=self.epsilon,
)
# result, residual
return at[1], at[2]
inputs = [
# input, weight, residual
*self.rmsnorm_matcher.inputs(),
self.quant_matcher.inputs()[1], # scale
]
pm.register_replacement(
pattern,
replacement,
inputs,
pm.fwd_only,
pm_pass,
)
class RMSNormDynamicQuantPattern(RMSNormQuantPattern):
def __init__(
self,
epsilon: float,
quant_dtype: torch.dtype,
group_shape: GroupShape = GroupShape.PER_TOKEN,
symmetric=True,
):
scale = ScaleDesc(torch.float32, False, group_shape)
key = FusedRMSQuantKey(
fused_add=False,
quant=QuantKey(dtype=quant_dtype, scale=scale, symmetric=symmetric),
)
super().__init__(epsilon, key)
def register(self, pm_pass: PatternMatcherPass):
def pattern(input: torch.Tensor, weight: torch.Tensor):
result_rms = self.rmsnorm_matcher(input, weight)
# result, scale
return self.quant_matcher(result_rms)
def replacement(input: torch.Tensor, weight: torch.Tensor):
# In case we're matching native rms-norm, conversions might be
# optimized out. We convert here just to be safe.
input = input.to(dtype=self.model_dtype)
result = torch.empty_like(input, dtype=self.quant_dtype)
scale = self.quant_matcher.make_scale(input)
at = auto_functionalized(
self.FUSED_OP,
result=result,
input=input,
weight=weight,
scale=scale,
epsilon=self.epsilon,
scale_ub=None,
residual=None,
)
# result, scale
return at[1], at[2]
pm.register_replacement(
pattern,
replacement,
self.rmsnorm_matcher.inputs(),
pm.fwd_only,
pm_pass,
)
class FusedAddRMSNormDynamicQuantPattern(RMSNormQuantPattern):
def __init__(
self,
epsilon: float,
quant_dtype: torch.dtype,
group_shape: GroupShape = GroupShape.PER_TOKEN,
symmetric=True,
):
scale = ScaleDesc(torch.float32, False, group_shape)
key = FusedRMSQuantKey(
fused_add=True,
quant=QuantKey(dtype=quant_dtype, scale=scale, symmetric=symmetric),
)
super().__init__(epsilon, key)
def register(self, pm_pass: PatternMatcherPass):
def pattern(input: torch.Tensor, weight: torch.Tensor, residual: torch.Tensor):
result_rms, residual = self.rmsnorm_matcher(input, weight, residual)
result, scale = self.quant_matcher(result_rms)
return result, residual, scale
def replacement(
input: torch.Tensor, weight: torch.Tensor, residual: torch.Tensor
):
# In case we're matching native rms-norm, conversions might be
# optimized out. We convert here just to be safe.
input = input.to(dtype=self.model_dtype)
result = torch.empty_like(input, dtype=self.quant_dtype)
scale = self.quant_matcher.make_scale(input)
at = auto_functionalized(
self.FUSED_OP,
result=result,
input=input,
weight=weight,
scale=scale,
epsilon=self.epsilon,
scale_ub=None,
residual=residual,
)
# result, residual, scale
return at[1], at[3], at[2]
pm.register_replacement(
pattern,
replacement,
self.rmsnorm_matcher.inputs(),
pm.fwd_only,
pm_pass,
)
class RMSNormQuantFusionPass(VllmPatternMatcherPass):
"""
This pass fuses rms_norm & quant custom ops into a fused rms_norm_quant op.
It also supports fused_add_rms_norm.
"""
@enable_fake_mode
def __init__(self, config: VllmConfig):
super().__init__(config)
self.patterns: PatternMatcherPass = PatternMatcherPass(
pass_name="rmsnorm_quant_fusion_pass"
)
# Make sure fused add patterns are before simple rms norm,
# as the latter is a subset of the former in torch ops
for epsilon in [1e-5, 1e-6]:
# Fuse fused_add_rms_norm + static fp8 quant
FusedAddRMSNormStaticQuantPattern(epsilon, FP8_DTYPE).register(
self.patterns
)
# Fuse rms_norm + static fp8 quant
RMSNormStaticQuantPattern(epsilon, FP8_DTYPE).register(self.patterns)
# Fuse fused_add_rms_norm + dynamic per-token fp8 quant
FusedAddRMSNormDynamicQuantPattern(epsilon, FP8_DTYPE).register(
self.patterns
)
# Fuse rms_norm + dynamic per-token fp8 quant
RMSNormDynamicQuantPattern(epsilon, FP8_DTYPE).register(self.patterns)
self.dump_patterns(config, self.patterns)
@VllmInductorPass.time_and_log
def __call__(self, graph: fx.Graph):
self.matched_count = self.patterns.apply(graph)
logger.debug("Replaced %s patterns", self.matched_count)
def uuid(self) -> Any:
return self.hash_source(
self,
RMSNormQuantPattern,
RMSNormStaticQuantPattern,
RMSNormDynamicQuantPattern,
FusedAddRMSNormStaticQuantPattern,
FusedAddRMSNormDynamicQuantPattern,
)