Simon Mo 02f0c7b220
[Misc] Add SPDX-FileCopyrightText (#19100)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-06-03 11:20:17 -07:00

298 lines
11 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Any, Optional
import torch
from torch.nn.parameter import Parameter
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase
from vllm.model_executor.layers.quantization import QuantizationMethods
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.parameter import (BasevLLMParameter,
ChannelQuantScaleParameter,
GroupQuantScaleParameter,
PackedvLLMParameter)
from vllm.scalar_type import scalar_types
logger = init_logger(__name__)
GPTQ_MARLIN_24_TILE = 16
GPTQ_MARLIN_24_MIN_THREAD_N = 128
GPTQ_MARLIN_24_MIN_THREAD_K = 128
GPTQ_MARLIN_24_MAX_PARALLEL = 64
GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES = [
scalar_types.uint4b8, scalar_types.uint8b128
]
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES = [-1, 128]
class GPTQMarlin24Config(QuantizationConfig):
"""Config class for Marlin24.
"""
def __init__(
self,
weight_bits: int,
group_size: int,
) -> None:
super().__init__()
quant_type = {
4: scalar_types.uint4b8,
8: scalar_types.uint8b128,
}.get(weight_bits)
self.group_size = group_size
# Verify
if quant_type is None or \
quant_type not in GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES:
raise ValueError(
f"Marlin_24 does not support quant_type = {quant_type}. "
f"Only weight_bits = {GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES} "
"are supported.")
if self.group_size not in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES:
raise ValueError(
f"Marlin_24 does not support group_size = {self.group_size}. "
f"Only group_sizes = {GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES} "
"are supported.")
self.quant_type = quant_type
# 4 Bits packed into 32 bit datatype.
self.pack_factor = 32 // self.quant_type.size_bits
# Tile size used by marlin kernels.
self.tile_size = 16
# Min out_features dim
self.min_n_threads = GPTQ_MARLIN_24_MIN_THREAD_N
# Min in_features dim
self.min_k_threads = GPTQ_MARLIN_24_MIN_THREAD_K
# Max parallel problems to solve at once (improves large
# batch performance)
self.max_parallel = GPTQ_MARLIN_24_MAX_PARALLEL
# Permutation length used by the marlin kernels.
self.perm_len = 1024
def __repr__(self) -> str:
return "Marlin24Config(quant_type={}, group_size={})".format(
self.quant_type, self.group_size)
@classmethod
def get_name(cls) -> QuantizationMethods:
return "gptq_marlin_24"
@classmethod
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
return [torch.half]
@classmethod
# Need to figure it out
def get_min_capability(cls) -> int:
return 80
@classmethod
def get_config_filenames(cls) -> list[str]:
return ["quantize_config.json"]
@classmethod
def from_config(cls, config: dict[str, Any]) -> "GPTQMarlin24Config":
weight_bits = cls.get_from_keys(config, ["bits"])
group_size = cls.get_from_keys(config, ["group_size"])
return cls(weight_bits, group_size)
@classmethod
def override_quantization_method(
cls, hf_quant_cfg, user_quant) -> Optional[QuantizationMethods]:
is_marlin_24_format = (
hf_quant_cfg.get("checkpoint_format") == "marlin_24")
is_valid_user_quant = (user_quant is None or user_quant == "gptq"
or user_quant == "gptq_marlin_24")
if is_marlin_24_format and is_valid_user_quant:
msg = ("The model is serialized in {} format. "
"Using {} kernel.".format(cls.get_name(), cls.get_name()))
logger.info(msg)
return cls.get_name()
return None
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["GPTQMarlin24LinearMethod"]:
if isinstance(layer, LinearBase):
return GPTQMarlin24LinearMethod(self)
return None
class GPTQMarlin24LinearMethod(LinearMethodBase):
"""Linear method for Marlin24.
Args:
quant_config: The Marlin24 quantization config.
"""
def __init__(self, quant_config: GPTQMarlin24Config):
self.quant_config = quant_config
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: list[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
del output_size # Unused.
weight_loader = extra_weight_attrs["weight_loader"]
if params_dtype != torch.float16:
raise ValueError(
f"The params dtype must be float16, but got {params_dtype}")
# Validate output_size_per_partition
output_size_per_partition = sum(output_partition_sizes)
if output_size_per_partition % self.quant_config.min_n_threads != 0:
raise ValueError(
f"Weight output_size_per_partition = "
f"{output_size_per_partition} is not divisible by "
f"min_n_threads = {self.quant_config.min_n_threads}.")
if output_size_per_partition % self.quant_config.pack_factor != 0:
raise ValueError(
f"Weight output_size_per_partition = "
f"{output_size_per_partition} is not divisible by "
f"pack_factor = {self.quant_config.pack_factor}.")
# Validate input_size_per_partition
if input_size_per_partition % self.quant_config.min_k_threads != 0:
raise ValueError(
f"Weight input_size_per_partition = "
f"{input_size_per_partition} is not divisible by "
f"min_k_threads = {self.quant_config.min_k_threads}.")
if (self.quant_config.group_size != -1 and
input_size_per_partition % self.quant_config.group_size != 0):
raise ValueError(f"Weight input_size_per_partition = "
f"{input_size_per_partition} is not divisible by "
f"group_size = {self.quant_config.group_size}.")
# Check that we have at least 4 tiles horizontally in the shard
num_tiles_per_perm = self.quant_config.perm_len // (
self.quant_config.tile_size**2)
if output_size_per_partition % num_tiles_per_perm != 0:
raise ValueError(
"Each permutation group must reside on the same gpu")
# Quantized 4Bit weights packed into Int32.
qweight = PackedvLLMParameter(
data=torch.empty(
input_size_per_partition // self.quant_config.tile_size // 2,
output_size_per_partition * self.quant_config.tile_size //
self.quant_config.pack_factor,
device="cuda",
dtype=torch.int32,
),
input_dim=0,
output_dim=1,
packed_dim=1,
packed_factor=self.quant_config.pack_factor,
marlin_tile_size=self.quant_config.tile_size,
weight_loader=weight_loader)
# Meta
meta = PackedvLLMParameter(data=torch.empty(
input_size_per_partition // 8 // 2 // 2,
output_size_per_partition * 2,
device="cuda",
dtype=torch.int16,
),
input_dim=0,
output_dim=1,
packed_dim=1,
packed_factor=1,
marlin_tile_size=2,
weight_loader=weight_loader)
# Determine if channelwise or not
input_groups = (1 if self.quant_config.group_size == -1 else
input_size_per_partition //
self.quant_config.group_size)
weight_scale_args = {
"data":
torch.empty(
input_groups,
output_size_per_partition,
device="cuda",
dtype=params_dtype,
),
"weight_loader":
weight_loader
}
if input_groups == 1:
scales = ChannelQuantScaleParameter(output_dim=1,
**weight_scale_args)
else:
scales = GroupQuantScaleParameter(output_dim=1,
input_dim=0,
**weight_scale_args)
# Allocate workspace (Used for internal locking mechanism)
max_workspace_size = (
output_size_per_partition //
self.quant_config.min_n_threads) * self.quant_config.max_parallel
workspace = BasevLLMParameter(data=torch.zeros(max_workspace_size,
device="cuda",
dtype=torch.int),
weight_loader=weight_loader)
layer.register_parameter("B_24", qweight)
layer.register_parameter("B_meta", meta)
layer.register_parameter("s", scales)
layer.register_parameter("workspace", workspace)
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
# required by torch.compile
layer.B_24 = Parameter(layer.B_24.data, requires_grad=False)
layer.s = Parameter(layer.s.data, requires_grad=False)
layer.B_meta = Parameter(layer.B_meta.data, requires_grad=False)
layer.workspace = Parameter(layer.workspace.data, requires_grad=False)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
qweight = layer.B_24
meta = layer.B_meta
scales = layer.s
workspace = layer.workspace
x_2d = x.view(-1, x.shape[-1])
size_m = x_2d.shape[0]
size_k = x_2d.shape[1]
size_n = scales.shape[1]
output_2d = ops.gptq_marlin_24_gemm(x_2d, qweight, meta, scales,
workspace,
self.quant_config.quant_type,
size_m, size_n, size_k)
output = output_2d.view(x.shape[:-1] + (output_2d.shape[1], ))
if bias is not None:
output.add_(bias) # In-place add
return output