vllm/.buildkite/lm-eval-harness/test_lm_eval_correctness.py
2025-05-06 18:00:10 -07:00

51 lines
1.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
"""
LM eval harness on model to compare vs HF baseline computed offline.
Configs are found in configs/$MODEL.yaml
pytest -s -v test_lm_eval_correctness.py \
--config-list-file=configs/models-small.txt \
--tp-size=1
"""
import lm_eval
import numpy as np
import yaml
RTOL = 0.08
def launch_lm_eval(eval_config, tp_size):
trust_remote_code = eval_config.get('trust_remote_code', False)
model_args = f"pretrained={eval_config['model_name']}," \
f"tensor_parallel_size={tp_size}," \
f"enforce_eager=true," \
f"add_bos_token=true," \
f"trust_remote_code={trust_remote_code}"
results = lm_eval.simple_evaluate(
model="vllm",
model_args=model_args,
tasks=[task["name"] for task in eval_config["tasks"]],
num_fewshot=eval_config["num_fewshot"],
limit=eval_config["limit"],
batch_size="auto")
return results
def test_lm_eval_correctness_param(config_filename, tp_size):
eval_config = yaml.safe_load(config_filename.read_text(encoding="utf-8"))
results = launch_lm_eval(eval_config, tp_size)
success = True
for task in eval_config["tasks"]:
for metric in task["metrics"]:
ground_truth = metric["value"]
measured_value = results["results"][task["name"]][metric["name"]]
print(f'{task["name"]} | {metric["name"]}: '
f'ground_truth={ground_truth} | measured={measured_value}')
success = success and np.isclose(
ground_truth, measured_value, rtol=RTOL)
assert success